Titanium and its alloys have found very wide application in aerospace due to their excellent characteristics although their processing is still a challenge. Electrochemical machining is an important issue in the fabri...Titanium and its alloys have found very wide application in aerospace due to their excellent characteristics although their processing is still a challenge. Electrochemical machining is an important issue in the fabrication of titanium and titanium alloys. Wire electrochemical machining (WECM) is mainly used for workpiece cutting under the condition of different thickness plates. It has a great advantage over wire electro-discharge machining, which is the absence of heat-affected zone around the cutting area. Moreover, the wire electrode in WECM could be used repetitively because it is not worn out. Thus, much attention has been paid to WECM. The effective way of removing electrolysis products is of importance to WECM. In this paper, the axial electrolyte flushing is presented to WECM for removing electrolysis products and renewing electrolyte. The Taguchi experiment is conducted to optimize the machining parameters, such as wire feedrate, machining voltage, electrolyte concentration, etc. Experimental results show that WECM with axial electrolyte flushing is a promising issue in the fabrication of titanium alloy (TC1). The feasibility of multi-wire electrochemical machining is also demonstrated to improve the machining productivity of WECM.展开更多
基金financial support from the National Natural Science Foundation of China (No. 51005120)Jiangsu Natural Science Foundation (Nos. BK2010508 and BE2010193)
文摘Titanium and its alloys have found very wide application in aerospace due to their excellent characteristics although their processing is still a challenge. Electrochemical machining is an important issue in the fabrication of titanium and titanium alloys. Wire electrochemical machining (WECM) is mainly used for workpiece cutting under the condition of different thickness plates. It has a great advantage over wire electro-discharge machining, which is the absence of heat-affected zone around the cutting area. Moreover, the wire electrode in WECM could be used repetitively because it is not worn out. Thus, much attention has been paid to WECM. The effective way of removing electrolysis products is of importance to WECM. In this paper, the axial electrolyte flushing is presented to WECM for removing electrolysis products and renewing electrolyte. The Taguchi experiment is conducted to optimize the machining parameters, such as wire feedrate, machining voltage, electrolyte concentration, etc. Experimental results show that WECM with axial electrolyte flushing is a promising issue in the fabrication of titanium alloy (TC1). The feasibility of multi-wire electrochemical machining is also demonstrated to improve the machining productivity of WECM.