Based on a three-dimensional finite element model of an underground pipeline,the influence of additional ground loads on the stress characteristics of the pipeline was studied.Furthermore,the effects of different soil...Based on a three-dimensional finite element model of an underground pipeline,the influence of additional ground loads on the stress characteristics of the pipeline was studied.Furthermore,the effects of different soil properties,load locations,and varying burial depths on the pipeline’s stress characteristics were analyzed.The research results show that as the distance between the load center and the pipeline axis increases,the positions of the pipe’s maximum displacement,bending moment,and shear force along the axis decrease significantly.However,when this distance reaches a certain value,the pipeline’s maximum vertical displacement and internal forces approach zero.Different pipelines exhibit minimum values of maximum axial displacement and vertical displacement in soft soil,while maximum axial displacement occurs in clay,and the largest vertical displacement is observed in sandy soil.The maximum axial displacement of UPVC pipes in clay is twice that of soft soil.The vertical displacement of pipes made from different materials increases with burial depth,but for concrete and steel pipes,the maximum axial tension increases significantly with depth,whereas the change in UPVC pipes is more gradual.展开更多
Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for ...Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.展开更多
The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low s...The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low specific-speed centrifugal pump with Q=12.5 m3/h, H=60 m, n=2950 r/min was selected to be designed with eight axial reflux balance holes with 4.5 mm in diameter. The simulated Q-H curve and net positive suction head(NPSH) were in good agreement with experimental results, which illustrated that centrifugal pump with axial reflux balance holes was superior in the cavitation characteristic; however, it showed to little superiority in head and efficiency. The pressure in rear pump chamber at 0.6 times rate flow is 29.36% of pressure difference between outlet and inlet, which reduces to 29.10% at rate flow and 28.33% at 1.4 times rate flow. As the whole, the pressure distribution on front and rear shrouds from simulation results is not a standard parabola, and axial force decreases as flow rate increases. Radical reflux balance holes chosen to be 5.2 mm and 5.9 mm in diameter were further designed with other hydraulic parts unchanged. With structural grids adopted for total flow field, contrast numerical simulation on internal flow characteristics was conducted based on momentum equations and standard turbulence model(κ-ε). It is found that axial force of pump with radical reflux balance holes of5.2 mm and 5.9 mm in diameter is significantly less than that with radical reflux balance holes of 4.5 mm in diameter. Better axial force balance is obtained as the ratio of area of reflux balance holes and area of sealing ring exceeds 6.展开更多
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is...The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.展开更多
The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing...The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing equations of motion are derived by using the Rayleigh-Ritz method and transformed into Mathieu equations, which are formed to determine the stability criterion and stability regions for parametricallyexcited linear resonant beams. An improved stability criterion is obtained using periodic Lyapunov functions. The boundary points on the stable regions are determined by using a small parameter perturbation method. Numerical results and discussion are presented to highlight the effects of beam length, axial force and damped coefficient on the stability criterion and stability regions. While some stability rules are easy to anticipate, we draw some conclusions: with the increase of damped coefficient, stable regions arise; with the decrease of beam length, the conditions of the damped coefficient arise instead. These conclusions can provide a reference for the robust design of parametricallyexcited linear resonant sensors.展开更多
The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated.Governing equations of the pile-soil system are established based on elastodyn...The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated.Governing equations of the pile-soil system are established based on elastodynamics.Threedimensional wave equations of soil are decoupled through differential transformation and variable separation.Consequently,expressions of soil displacements and horizontal resistances can be obtained.An analytical solution of the pile is derived based on continuity conditions between the pile and soil,subsequently from which expressions of the complex impedances are deduced.Analyses are carried out to examine the second-order effect of axial force on the horizontal vibrating behavior of the pipe pile.Some conclusions can be summarized as follows: stiffness and damping factors are decreased with the application of axial force on the pile head; distributions of the pile horizontal displacement and rotation angle are regenerated due to the second-order effect of the applied axial force; and redistributions of the bending moment and shearing force occur due to the second-order effect of the applied axial force.展开更多
The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophagea...The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.展开更多
Based on the transfer matrix method and Forman equation,a new method is proposed to conduct the modal and fatigue life analysis of a beam with multiple transverse cracks.In the modal analysis,the damping loss factor i...Based on the transfer matrix method and Forman equation,a new method is proposed to conduct the modal and fatigue life analysis of a beam with multiple transverse cracks.In the modal analysis,the damping loss factor is introduced by the complex elastic modulus,bending springs without mass are used to replace the transverse cracks,and the characteristic transfer matrix of the whole cracked beam can be derived.In the fatigue life analysis,considering the interaction of the beam vibration and fatigue cracks growth,the fatigue life of the cracked beam is predicted by the timing analysis method.Numerical calculation shows that cracks have a significant influence on the modal and fatigue life of the beam.展开更多
Eringen’s two-phase local/nonlocal model is applied to an Euler-Bernoulli nanobeam considering the bending-induced axial force, where the contribution of the axial force to bending moment is calculated on the deforme...Eringen’s two-phase local/nonlocal model is applied to an Euler-Bernoulli nanobeam considering the bending-induced axial force, where the contribution of the axial force to bending moment is calculated on the deformed state. Basic equations for the corresponding one-dimensional beam problem are obtained by degenerating from the three-dimensional nonlocal elastic equations. Semi-analytic solutions are then presented for a clamped-clamped beam subject to a concentrated force and a uniformly distributed load, respectively. Except for the traditional essential boundary conditions and those required to be satisfied by transferring an integral equation to its equivalent differential form, additional boundary conditions are needed and should be chosen with great caution, since numerical results reveal that non-unique solutions might exist for a nonlinear problem if inappropriate boundary conditions are used. The validity of the solutions is examined by plotting both sides of the original integro-differential governing equation of deflection and studying the error between both sides. Besides, an increase in the internal characteristic length would cause an increase in the deflection and axial force of the beam.展开更多
In view of the axial force produced in the working process of double arc helical gear hydraulic pump,the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axia...In view of the axial force produced in the working process of double arc helical gear hydraulic pump,the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axial force was obtained and the relationship between the axial force and structure parameters of gears was clarified.In order to balance the axial force,the pressure oil in the high pressure area was introduced into the end face of the plunger to press the plunger against the gear shaft,and the hydrostatic bearing whose type is plunger at the end of the shaft was designed.In order to verify the balance effect of axial force,the leakage owing to end clearance and volume efficiency of gear hydraulic pump before and after the balancing process was analyzed.This paper provides a new analysis idea and balance scheme for the axial force produced in the working process of the double arc helical gear hydraulic pump,which can reduce the leakage owing to end clearance caused by the axial force and improve the volume efficiency of the gear hydraulic pump.展开更多
The theoretical results of axial force distribution models differ greatly from tests because of the complication of the rock type material. A three-parameter combined-power model is proposed by curves fitting the test...The theoretical results of axial force distribution models differ greatly from tests because of the complication of the rock type material. A three-parameter combined-power model is proposed by curves fitting the test data recorded from the pull tests on anchoring bars used in different engineering projects. Based on the comparison of the mechanical characteristics of shaft anchors and prestressed tendons, a two-parameter combined-power function model for prestressed tendons is proposed. The bounded length derived from the model and the suggested values of the parameters are also proposed. Compared with the Gaussian model, the three-parameter combined-power model is more precise and simple in expression. Results also suggest that the bounded length calculated from the average stress method is not safe enough.展开更多
The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 ...The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 (s = 4d) with s and d were piled spacing and piled diameter respectively were considered in this study. Undrained (without ground water pumping) and drained (with ground water pumping) conditions were applied in each case in order to evaluate variations of ultimate bearing capacity of piled raft and axial force of the piles in piled raft. The results showed that ultimate bearing capacity increased about 25% for undrained condition and about 32% for drained condition when piled spacing increased from 2d to 4d. In the same piled spacing, axial force of the piles increased about 9% for piled spacing of 2d and 7% for piled spacing of 4d when drained condition was applied. When piled spacing increased 2 times (2d to 4d), the axial force of piles increased about 7% for undrained condition and about 5% for drained condition.展开更多
The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to ana...The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness, and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.展开更多
Friction stir welding( FSW) is a solid-state welding process that utilizes a rotating tool to induce gross material plastic deformation and join two parts together. A large number of studies have indicated that axial ...Friction stir welding( FSW) is a solid-state welding process that utilizes a rotating tool to induce gross material plastic deformation and join two parts together. A large number of studies have indicated that axial force control can be used to achieve good welding quality. However,in the welding process,due to workpiece's geometry error,improper clamping and other process variations,the axial force can vary significantly and produce welding defects.The control of force in the process of FSW is investigated. At first,the development and evaluation of a closed-loop control system is described,which is equipped with a custom real-time wireless force dynamometer for FSW. Then,an axial force controller is designed based on nonlinear force controllers for FSW. Experimental validations are carried out on an FSW platform. The experimental results demonstrate that the controller maintains the constant axial force and shows desirable dynamic behavior, even when the disturbance is encountered during the welding process.展开更多
AIM: To study the effect of viscosity on axial force in the esophagus during primary peristalsis using a newly validated impedance-based axial force recording technique. METHODS: A probe able to simultaneously measure...AIM: To study the effect of viscosity on axial force in the esophagus during primary peristalsis using a newly validated impedance-based axial force recording technique. METHODS: A probe able to simultaneously measure both axial force and manometry was positioned above the lower esophageal sphincter. Potable tap water and three thickened fluids were used to create boluses of different viscosities. Water has a viscosity of 1 mPa·s. The three thickened fluids were made with different concentrations of Clinutren Instant thickener. The viscous fluids were in appearance comparable to pudding (2 kPa·s), yogurt (6 kPa·s) and slush ice (10 kPa·s). Six healthy volunteers swallowed 5 and 10 mL of boluses multiple times. RESULTS: The pressure amplitude did not increase with the bolus viscosity nor with the bolus volume whereas the axial force increased marginally with bolus volume (0.1 > P > 0.05). Both techniques showed that contraction duration increased with bolus viscosity (P < 0.01). Association was found between axial force and pressure but the association became weaker withincreasing viscosity. The pressure amplitude did not increase with the viscosity or bolus volume whereas the axial force increased marginally with the bolus size. CONCLUSION: This indicates a discrepancy between the physiological functions that can be recorded with axial force measurements and pressure measurements.展开更多
The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved....The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved. The nonlinear equations governing the transverse vibration are derived from the dynamical, constitutive, and geometrical relations. The method of multiple scales is used to determine the steady-state response. The modulation equation is derived from the solvability condition of eliminating secular terms. Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response are derived from the modulation equation. The stability of non- trivial steady-state response is examined via the Routh-Hurwitz criterion.展开更多
Based on the governing equations of the inner cyinder of the unsteady flow of the power law fluid in eccentric annuli with the inner cylinder reciprocating axially in bipolar coordinate system, the calculation formula...Based on the governing equations of the inner cyinder of the unsteady flow of the power law fluid in eccentric annuli with the inner cylinder reciprocating axially in bipolar coordinate system, the calculation formulae of tangential force were established, and the relevant numerical calculation method was given. Taking the aqueous solution of partially hydrolyzed polyacrylamides (HPAM) for examples, the tangential forces were calculated by using the formulae and numerical calculation method mentioned above;the curves of the tangential force on the wall of the inner cylinder of HPAM aqueous solution were plotted;and the effects on the tangential force of the flow behavior index of the power law fluid, the stroke and the stroke frequency of the inner cylinder were analyzed.展开更多
A mobility matrix modeling strategy based on axial force solution for a weakly coupled parallel multi-dimentional(multi-DIM)isolator is proposed.Mobility power flow and transmissibility through the isolator are derive...A mobility matrix modeling strategy based on axial force solution for a weakly coupled parallel multi-dimentional(multi-DIM)isolator is proposed.Mobility power flow and transmissibility through the isolator are derived from the mobility matrix.Comparison between simulation and experimental results shows the correctness of the proposed modeling strategy.展开更多
Physical model test is an effective way to unveil the dynamic response of a slope under seismic condition.The similarity design is the key of physical model test.An isolated similarity design method for shaking table ...Physical model test is an effective way to unveil the dynamic response of a slope under seismic condition.The similarity design is the key of physical model test.An isolated similarity design method for shaking table tests was proposed and verified in this work.In this method,the relevant physical quantities were divided into several subsystems and subcharacteristic equations for each subsystem were then established based on the Buckingham similarity theory.Large-scale shaking table tests on a reinforced slope were adopted herein to illustrate the application of the proposed isolated similarity design method.The similarity system for the studied slope was divided into four parts in the process of similarity design.The geometrical dimension L,densityρand gravity g were selected as fundamental quantities for the similarity design,and four subcharacteristic equations were established for each subsystem.The dynamic responses of the recorded acceleration and axis force show that the seismic waves propagate well in the model slope.The proposed isolated similarity design method solves the conflict between the similarity requirement for all relevant physical quantities and the difficulty of test model fabrication to satisfy all similarity relations.展开更多
The forces of nature represent the biggest challenge for engineering work in general and perhaps the most prominent of these forces. This generated by earthquake where engineering structure is exposed abnormal loads a...The forces of nature represent the biggest challenge for engineering work in general and perhaps the most prominent of these forces. This generated by earthquake where engineering structure is exposed abnormal loads and stresses which places areal burden on structural engineers to find solutions and structural systems to increase resistance and effectiveness of engineering structure especially high rise concrete structures.展开更多
文摘Based on a three-dimensional finite element model of an underground pipeline,the influence of additional ground loads on the stress characteristics of the pipeline was studied.Furthermore,the effects of different soil properties,load locations,and varying burial depths on the pipeline’s stress characteristics were analyzed.The research results show that as the distance between the load center and the pipeline axis increases,the positions of the pipe’s maximum displacement,bending moment,and shear force along the axis decrease significantly.However,when this distance reaches a certain value,the pipeline’s maximum vertical displacement and internal forces approach zero.Different pipelines exhibit minimum values of maximum axial displacement and vertical displacement in soft soil,while maximum axial displacement occurs in clay,and the largest vertical displacement is observed in sandy soil.The maximum axial displacement of UPVC pipes in clay is twice that of soft soil.The vertical displacement of pipes made from different materials increases with burial depth,but for concrete and steel pipes,the maximum axial tension increases significantly with depth,whereas the change in UPVC pipes is more gradual.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘Second-order axially moving systems are common models in the field of dynamics, such as axially moving strings, cables, and belts. In the traditional research work, it is difficult to obtain closed-form solutions for the forced vibration when the damping effect and the coupling effect of multiple second-order models are considered.In this paper, Green's function method based on the Laplace transform is used to obtain closed-form solutions for the forced vibration of second-order axially moving systems. By taking the axially moving damping string system and multi-string system connected by springs as examples, the detailed solution methods and the analytical Green's functions of these second-order systems are given. The mode functions and frequency equations are also obtained by the obtained Green's functions. The reliability and convenience of the results are verified by several examples. This paper provides a systematic analytical method for the dynamic analysis of second-order axially moving systems, and the obtained Green's functions are applicable to different second-order systems rather than just string systems. In addition, the work of this paper also has positive significance for the study on the forced vibration of high-order systems.
基金Project(51179075)supported by the National Natural Science Foundation of ChinaProject(BK20131256)supported by the Natural Science Funds of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu High Education Institutions,China
文摘The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low specific-speed centrifugal pump with Q=12.5 m3/h, H=60 m, n=2950 r/min was selected to be designed with eight axial reflux balance holes with 4.5 mm in diameter. The simulated Q-H curve and net positive suction head(NPSH) were in good agreement with experimental results, which illustrated that centrifugal pump with axial reflux balance holes was superior in the cavitation characteristic; however, it showed to little superiority in head and efficiency. The pressure in rear pump chamber at 0.6 times rate flow is 29.36% of pressure difference between outlet and inlet, which reduces to 29.10% at rate flow and 28.33% at 1.4 times rate flow. As the whole, the pressure distribution on front and rear shrouds from simulation results is not a standard parabola, and axial force decreases as flow rate increases. Radical reflux balance holes chosen to be 5.2 mm and 5.9 mm in diameter were further designed with other hydraulic parts unchanged. With structural grids adopted for total flow field, contrast numerical simulation on internal flow characteristics was conducted based on momentum equations and standard turbulence model(κ-ε). It is found that axial force of pump with radical reflux balance holes of5.2 mm and 5.9 mm in diameter is significantly less than that with radical reflux balance holes of 4.5 mm in diameter. Better axial force balance is obtained as the ratio of area of reflux balance holes and area of sealing ring exceeds 6.
基金Project supported by the National Natural Science Foundation of China (No. 10472060)Natural Science Founda-tion of Shanghai Municipality (No. 04ZR14058)Doctor Start-up Foundation of Shenyang Institute of Aeronautical Engineering (No. 05YB04).
文摘The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60927005)the 2012 Innovation Foundation of BUAA for PhD Graduatesthe Fundamental Research Funds for the Central Universities,China (Grant No. YWF-10-01-A17)
文摘The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing equations of motion are derived by using the Rayleigh-Ritz method and transformed into Mathieu equations, which are formed to determine the stability criterion and stability regions for parametricallyexcited linear resonant beams. An improved stability criterion is obtained using periodic Lyapunov functions. The boundary points on the stable regions are determined by using a small parameter perturbation method. Numerical results and discussion are presented to highlight the effects of beam length, axial force and damped coefficient on the stability criterion and stability regions. While some stability rules are easy to anticipate, we draw some conclusions: with the increase of damped coefficient, stable regions arise; with the decrease of beam length, the conditions of the damped coefficient arise instead. These conclusions can provide a reference for the robust design of parametricallyexcited linear resonant sensors.
基金National Natural Science Foundation of China under Grant Nos.51622803 and 51708064the National Key Research and Development Program of China under Grant No.2016YFE0200100
文摘The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated.Governing equations of the pile-soil system are established based on elastodynamics.Threedimensional wave equations of soil are decoupled through differential transformation and variable separation.Consequently,expressions of soil displacements and horizontal resistances can be obtained.An analytical solution of the pile is derived based on continuity conditions between the pile and soil,subsequently from which expressions of the complex impedances are deduced.Analyses are carried out to examine the second-order effect of axial force on the horizontal vibrating behavior of the pipe pile.Some conclusions can be summarized as follows: stiffness and damping factors are decreased with the application of axial force on the pile head; distributions of the pile horizontal displacement and rotation angle are regenerated due to the second-order effect of the applied axial force; and redistributions of the bending moment and shearing force occur due to the second-order effect of the applied axial force.
基金Supported by Det Obelske Familiefond and Spar Nord Fonden
文摘The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.
基金supported by aproject funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Based on the transfer matrix method and Forman equation,a new method is proposed to conduct the modal and fatigue life analysis of a beam with multiple transverse cracks.In the modal analysis,the damping loss factor is introduced by the complex elastic modulus,bending springs without mass are used to replace the transverse cracks,and the characteristic transfer matrix of the whole cracked beam can be derived.In the fatigue life analysis,considering the interaction of the beam vibration and fatigue cracks growth,the fatigue life of the cracked beam is predicted by the timing analysis method.Numerical calculation shows that cracks have a significant influence on the modal and fatigue life of the beam.
基金Project supported by the National Natural Science Foundation of China(No.11472130)
文摘Eringen’s two-phase local/nonlocal model is applied to an Euler-Bernoulli nanobeam considering the bending-induced axial force, where the contribution of the axial force to bending moment is calculated on the deformed state. Basic equations for the corresponding one-dimensional beam problem are obtained by degenerating from the three-dimensional nonlocal elastic equations. Semi-analytic solutions are then presented for a clamped-clamped beam subject to a concentrated force and a uniformly distributed load, respectively. Except for the traditional essential boundary conditions and those required to be satisfied by transferring an integral equation to its equivalent differential form, additional boundary conditions are needed and should be chosen with great caution, since numerical results reveal that non-unique solutions might exist for a nonlinear problem if inappropriate boundary conditions are used. The validity of the solutions is examined by plotting both sides of the original integro-differential governing equation of deflection and studying the error between both sides. Besides, an increase in the internal characteristic length would cause an increase in the deflection and axial force of the beam.
文摘In view of the axial force produced in the working process of double arc helical gear hydraulic pump,the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axial force was obtained and the relationship between the axial force and structure parameters of gears was clarified.In order to balance the axial force,the pressure oil in the high pressure area was introduced into the end face of the plunger to press the plunger against the gear shaft,and the hydrostatic bearing whose type is plunger at the end of the shaft was designed.In order to verify the balance effect of axial force,the leakage owing to end clearance and volume efficiency of gear hydraulic pump before and after the balancing process was analyzed.This paper provides a new analysis idea and balance scheme for the axial force produced in the working process of the double arc helical gear hydraulic pump,which can reduce the leakage owing to end clearance caused by the axial force and improve the volume efficiency of the gear hydraulic pump.
基金This paper is supported by the Foundation for Research Project of ChinaCommunications Second Highway Survey Design and ResearchInstitute .
文摘The theoretical results of axial force distribution models differ greatly from tests because of the complication of the rock type material. A three-parameter combined-power model is proposed by curves fitting the test data recorded from the pull tests on anchoring bars used in different engineering projects. Based on the comparison of the mechanical characteristics of shaft anchors and prestressed tendons, a two-parameter combined-power function model for prestressed tendons is proposed. The bounded length derived from the model and the suggested values of the parameters are also proposed. Compared with the Gaussian model, the three-parameter combined-power model is more precise and simple in expression. Results also suggest that the bounded length calculated from the average stress method is not safe enough.
文摘The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 (s = 4d) with s and d were piled spacing and piled diameter respectively were considered in this study. Undrained (without ground water pumping) and drained (with ground water pumping) conditions were applied in each case in order to evaluate variations of ultimate bearing capacity of piled raft and axial force of the piles in piled raft. The results showed that ultimate bearing capacity increased about 25% for undrained condition and about 32% for drained condition when piled spacing increased from 2d to 4d. In the same piled spacing, axial force of the piles increased about 9% for piled spacing of 2d and 7% for piled spacing of 4d when drained condition was applied. When piled spacing increased 2 times (2d to 4d), the axial force of piles increased about 7% for undrained condition and about 5% for drained condition.
文摘The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness, and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.
基金Action Plan for Scientific and Technological Innovation of Shanghai,China(No.16DZ0502202)National Natural Science Foundation of China(No.51305272)
文摘Friction stir welding( FSW) is a solid-state welding process that utilizes a rotating tool to induce gross material plastic deformation and join two parts together. A large number of studies have indicated that axial force control can be used to achieve good welding quality. However,in the welding process,due to workpiece's geometry error,improper clamping and other process variations,the axial force can vary significantly and produce welding defects.The control of force in the process of FSW is investigated. At first,the development and evaluation of a closed-loop control system is described,which is equipped with a custom real-time wireless force dynamometer for FSW. Then,an axial force controller is designed based on nonlinear force controllers for FSW. Experimental validations are carried out on an FSW platform. The experimental results demonstrate that the controller maintains the constant axial force and shows desirable dynamic behavior, even when the disturbance is encountered during the welding process.
文摘AIM: To study the effect of viscosity on axial force in the esophagus during primary peristalsis using a newly validated impedance-based axial force recording technique. METHODS: A probe able to simultaneously measure both axial force and manometry was positioned above the lower esophageal sphincter. Potable tap water and three thickened fluids were used to create boluses of different viscosities. Water has a viscosity of 1 mPa·s. The three thickened fluids were made with different concentrations of Clinutren Instant thickener. The viscous fluids were in appearance comparable to pudding (2 kPa·s), yogurt (6 kPa·s) and slush ice (10 kPa·s). Six healthy volunteers swallowed 5 and 10 mL of boluses multiple times. RESULTS: The pressure amplitude did not increase with the bolus viscosity nor with the bolus volume whereas the axial force increased marginally with bolus volume (0.1 > P > 0.05). Both techniques showed that contraction duration increased with bolus viscosity (P < 0.01). Association was found between axial force and pressure but the association became weaker withincreasing viscosity. The pressure amplitude did not increase with the viscosity or bolus volume whereas the axial force increased marginally with the bolus size. CONCLUSION: This indicates a discrepancy between the physiological functions that can be recorded with axial force measurements and pressure measurements.
基金Project supported by the National Natural Science Foundation of China (No.10972143)the Shanghai Municipal Education Commission (No.YYY11040)+2 种基金the Shanghai Leading Academic Discipline Project (No.J51501)the Leading Academic Discipline Project of Shanghai Institute of Technology(No.1020Q121001)the Start Foundation for Introducing Talents of Shanghai Institute of Technology (No.YJ2011-26)
文摘The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved. The nonlinear equations governing the transverse vibration are derived from the dynamical, constitutive, and geometrical relations. The method of multiple scales is used to determine the steady-state response. The modulation equation is derived from the solvability condition of eliminating secular terms. Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response are derived from the modulation equation. The stability of non- trivial steady-state response is examined via the Routh-Hurwitz criterion.
文摘Based on the governing equations of the inner cyinder of the unsteady flow of the power law fluid in eccentric annuli with the inner cylinder reciprocating axially in bipolar coordinate system, the calculation formulae of tangential force were established, and the relevant numerical calculation method was given. Taking the aqueous solution of partially hydrolyzed polyacrylamides (HPAM) for examples, the tangential forces were calculated by using the formulae and numerical calculation method mentioned above;the curves of the tangential force on the wall of the inner cylinder of HPAM aqueous solution were plotted;and the effects on the tangential force of the flow behavior index of the power law fluid, the stroke and the stroke frequency of the inner cylinder were analyzed.
基金Supported by the National Natural Science Foundation of China(No.51505124)the Scientific Research Initiation Foundation of North China University of Science and Technology(No.28405699).
文摘A mobility matrix modeling strategy based on axial force solution for a weakly coupled parallel multi-dimentional(multi-DIM)isolator is proposed.Mobility power flow and transmissibility through the isolator are derived from the mobility matrix.Comparison between simulation and experimental results shows the correctness of the proposed modeling strategy.
基金financially supported by National Natural Science Foundation of China(51708163 and 41907247)Hainan Provincial Natural Science Foundation of China(520MS018)the foundation from the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(SKLGP2021K008)。
文摘Physical model test is an effective way to unveil the dynamic response of a slope under seismic condition.The similarity design is the key of physical model test.An isolated similarity design method for shaking table tests was proposed and verified in this work.In this method,the relevant physical quantities were divided into several subsystems and subcharacteristic equations for each subsystem were then established based on the Buckingham similarity theory.Large-scale shaking table tests on a reinforced slope were adopted herein to illustrate the application of the proposed isolated similarity design method.The similarity system for the studied slope was divided into four parts in the process of similarity design.The geometrical dimension L,densityρand gravity g were selected as fundamental quantities for the similarity design,and four subcharacteristic equations were established for each subsystem.The dynamic responses of the recorded acceleration and axis force show that the seismic waves propagate well in the model slope.The proposed isolated similarity design method solves the conflict between the similarity requirement for all relevant physical quantities and the difficulty of test model fabrication to satisfy all similarity relations.
文摘The forces of nature represent the biggest challenge for engineering work in general and perhaps the most prominent of these forces. This generated by earthquake where engineering structure is exposed abnormal loads and stresses which places areal burden on structural engineers to find solutions and structural systems to increase resistance and effectiveness of engineering structure especially high rise concrete structures.