External return mechanism is a mechanical structure applied to axial piston pumps.To study its lubrication characteristics,the Reynolds equation applied to an external return spherical hinge pair was deduced based on ...External return mechanism is a mechanical structure applied to axial piston pumps.To study its lubrication characteristics,the Reynolds equation applied to an external return spherical hinge pair was deduced based on the vector equation of relative-motion velocity of the external return spherical hinge pair under the influence of external swash plate inclination and offset distance.The results show that the total friction,axial leakage flow,and maximum value of the maximum oil-film pressure increase with increasing pump-shaft speed and decrease with increasing offset distance in one working cycle when the external-swash-plate inclination is constant.However,the varying offset distance has little effect on the axial leakage flow.The maximum value of the maximum oil-film pressure decreases with increasing external-swash-plate inclination and the total leakage flow increases with increasing external-swash-plate inclination in one working cycle when the offset distance is constant.It can be seen that the abovementioned parameters are important factors that affect the lubrication characteristics of external return spherical hinge pairs.Therefore,the complex effects of different coupling parameters should be comprehensively considered in the design of the external return mechanism.展开更多
This paper has introduced the developments of water hydraulic axial piston equipments. According to the effects of physicochemical properties of water on water hydraulic components, a novel valve plate for water hydra...This paper has introduced the developments of water hydraulic axial piston equipments. According to the effects of physicochemical properties of water on water hydraulic components, a novel valve plate for water hydraulic axial motor has been put forward, whose moment exerted by the fluid field between valve plate and bearing plate is balanced entirely. The material screening experiment of valve plate is done on the test rig. Through numerical simulation the effects of some geometry parameters on the performance of water hydraulic motor have been studied. The silencing grooves on the valve plate in water hydraulic motor can reduce the pressure shock and the occurrence of cavitation effectively. It is evident that the appropriate structure should change the wear status between matching pairs and reduces the wear and specific pressure of the matching pairs. The specimen with the new type valve plate is used in a tool system.展开更多
The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to ana...The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness, and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.展开更多
Axial flux hysteresis motor (AFHM) is self-starting synchronous motor that uses the hysteresis characteristics of magnetic materials. It is known that the magnetic characteristics of hysteresis motor could be easily a...Axial flux hysteresis motor (AFHM) is self-starting synchronous motor that uses the hysteresis characteristics of magnetic materials. It is known that the magnetic characteristics of hysteresis motor could be easily affected by air gap and structure dimensions variation. Air gap length plays an important role in flux distribution in hysteresis ring and influences the output torque, terminal current, efficiency and even optimal value of other structural parameters of AFHM. Regarding this issue, in this study effect of air gap variation on performance characteristics of an axial flux hysteresis motor and effect of air gap length on hysteresis ring thickness and stator winding turns is investigated. Effect of air gap length on electrical circuit model is perused. Finally, simulation of AFHM in order to extract the output values of motor and sensitivity analysis on air gap variation is done using 3D-Finite Element Model. Hysteresis loop in the shape of an inclined ellipse is adopted. This study can help designers in design approach of such motors.展开更多
This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finit...This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finite element calcula-tion. Then, the configuration yielding the best performances is integrated and modelled with the whole traction chain under MATLAB/SIMULINK environment in order to demonstrate the motor operation on a large speed band.展开更多
With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increas...With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.展开更多
This paper describes the electric drive for an in-wheel fractional-slot axial flux machine,designed for achieving a wide flux-weakening operating region.By using a slotted stator with fractional-slot windings and addi...This paper describes the electric drive for an in-wheel fractional-slot axial flux machine,designed for achieving a wide flux-weakening operating region.By using a slotted stator with fractional-slot windings and additional cores enclosing end windings,the axial flux machine reaches a wide constant power speed range.The machine is designed for increasing flux-weakening capability while obtaining low harmonic back-electromotive force and low cogging torque.A 10 N.m axial flux machine exhibiting 3 to 1 flux-weakening speed range has been built.A flux-weakening controller,able to maximize the output torque in the flux-weakening region,is designed and implemented.The goodness of both design and control algorithm is proved by experimental tests.However,such a fractional-slot machine has not only advantages.Rotor losses are very high,and they have to be properly considered during the design process.展开更多
This study is to explore a composite type piezoelectric motor. Its main structures include the piezoelectric stator, rotor, the preload adjusting module and shaft. Wherein the piezoelectric stator is made base, the co...This study is to explore a composite type piezoelectric motor. Its main structures include the piezoelectric stator, rotor, the preload adjusting module and shaft. Wherein the piezoelectric stator is made base, the composite type actuating element and stator formed. As the composite type actuating element is set by the axial vibration type actuating element, horizontal bending vibration type actuating element and vertical bending vibration type actuating element formed. The stator is an empty cylinder with a waist and tapered hole. In addition, the rotor is a kind of a hollow cone. It can be through the preload adjusting module to withstand the stator. As the preload adjusting module is set by the limit element, spring, washer and nut formed. While the shaft is a kind of cylinder with screw thread and stopper, it can pass through the piezoelectric stator, rotor and the preload adjusting module, making it a composite type piezoelectric motor. When we provide appropriate driving voltage, frequency, loading and phase angle to the piezoelectric stator, we can let the piezoelectric motor produces rapid rotation. Of course, we can also change through the driving phase angle, to change the direction of rotation of the piezoelectric motor. According to the experimental results, we found that its maximum speed and loading are 480 rpm and 2305 gw under conditions of 180 Vp-p, 35 kHz and 00 driving phase angle. Most importantly, we also found that the composite type piezoelectric motor has a very good conversion efficiency of the driving phase angle.展开更多
Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not ac...Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model in-cludes all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is paramet-ric and can be used for design process and sensitivity analysis.展开更多
针对轴向永磁齿轮电动机(Axial Magnetic Gear Motor,AMGM)整体尺寸偏大导致的转矩密度偏低(≤70 kN·m/m^(3))等缺陷,提出了一种双调制式轴向永磁齿轮电动机(Dual-modulation Axial Magnetic Gear Motor,DAMGM)。采用高速侧及低速...针对轴向永磁齿轮电动机(Axial Magnetic Gear Motor,AMGM)整体尺寸偏大导致的转矩密度偏低(≤70 kN·m/m^(3))等缺陷,提出了一种双调制式轴向永磁齿轮电动机(Dual-modulation Axial Magnetic Gear Motor,DAMGM)。采用高速侧及低速侧两个调磁环对DAMGM低速转子进行调制,且两个调磁环中的非导磁部分均为永磁体,有效提高了低速转子的输出转矩;另外,与现有AMGM相比,将驱动电动机置于DAMGM高速永磁转子内部,减小了整体轴向尺寸,大幅提高了低速转子的转矩密度(150 kN·m/m^(3))。针对现有3D有限元计算时间长、计算机资源浪费严重等问题,给出一种基于圆柱坐标系的DAMGM三维分析方法。根据调磁环的3种边界条件,建立了调制后DAMGM气隙磁场及电磁转矩的数理模型,不仅计算结果准确(与3D有限元相比,平均计算误差≤5%),而且计算时间短(仅为3D有限元的1/10),便于DAMGM不同参数结构的分析、比较与优化。展开更多
In this paper, we want to make a new type linear piezoelectric motor by mode shape coating or effective electrode surface coating. The mode shape is derived from the mechanical boundary conditions of the linear piezoe...In this paper, we want to make a new type linear piezoelectric motor by mode shape coating or effective electrode surface coating. The mode shape is derived from the mechanical boundary conditions of the linear piezoelectric motor. We only have access to the first three modes of formas, the effective electrode surface coating basis, as well as with the linear piezoelectric motor of normal shape do comparison. Next, we will inspect their gain or axial velocity through theoretical analysis, simulation and experiment. According to the results of the theoretical analysis, we have found that the gain or axial velocity of the linear piezoelectric motors of mode shape is much larger than the linear piezoelectric motors of normal shape. However, according to the results of simulation and experiments, we have found that the gain or axial velocity of the linear piezoelectric motors of mode shape is much greater than the linear piezoelectric motors of normal shape, which is about 1.2 to 1.4 times. The linear piezoelectric motor of mode shape 3 has the fastest axial velocity, which is about -48 mm/s and 48 mm/s under conditions of 180 Vp-p driving voltage, 21.2 kHz driving frequency (the third vibration modal), 25 gw loading and the position of loading or mass at x = 5 mm & 45 mm respectively. And its axial velocity is about 1.4 times the linear piezoelectric motor of normal shape under the same conditions. Overall, the mode shape coating helps to enhance the gain or axial velocity of the linear piezoelectric motor.展开更多
基金Project(GXXT-2019-048)supported by the University Synergy Innovation Program of Anhui Province,ChinaProject(51575002)supported by the National Natural Science Foundation of ChinaProject(gxbj ZD11)supported by the Top-Notch Talent Program of University(Profession)in Anhui Province,China。
文摘External return mechanism is a mechanical structure applied to axial piston pumps.To study its lubrication characteristics,the Reynolds equation applied to an external return spherical hinge pair was deduced based on the vector equation of relative-motion velocity of the external return spherical hinge pair under the influence of external swash plate inclination and offset distance.The results show that the total friction,axial leakage flow,and maximum value of the maximum oil-film pressure increase with increasing pump-shaft speed and decrease with increasing offset distance in one working cycle when the external-swash-plate inclination is constant.However,the varying offset distance has little effect on the axial leakage flow.The maximum value of the maximum oil-film pressure decreases with increasing external-swash-plate inclination and the total leakage flow increases with increasing external-swash-plate inclination in one working cycle when the offset distance is constant.It can be seen that the abovementioned parameters are important factors that affect the lubrication characteristics of external return spherical hinge pairs.Therefore,the complex effects of different coupling parameters should be comprehensively considered in the design of the external return mechanism.
文摘This paper has introduced the developments of water hydraulic axial piston equipments. According to the effects of physicochemical properties of water on water hydraulic components, a novel valve plate for water hydraulic axial motor has been put forward, whose moment exerted by the fluid field between valve plate and bearing plate is balanced entirely. The material screening experiment of valve plate is done on the test rig. Through numerical simulation the effects of some geometry parameters on the performance of water hydraulic motor have been studied. The silencing grooves on the valve plate in water hydraulic motor can reduce the pressure shock and the occurrence of cavitation effectively. It is evident that the appropriate structure should change the wear status between matching pairs and reduces the wear and specific pressure of the matching pairs. The specimen with the new type valve plate is used in a tool system.
文摘The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness, and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.
文摘Axial flux hysteresis motor (AFHM) is self-starting synchronous motor that uses the hysteresis characteristics of magnetic materials. It is known that the magnetic characteristics of hysteresis motor could be easily affected by air gap and structure dimensions variation. Air gap length plays an important role in flux distribution in hysteresis ring and influences the output torque, terminal current, efficiency and even optimal value of other structural parameters of AFHM. Regarding this issue, in this study effect of air gap variation on performance characteristics of an axial flux hysteresis motor and effect of air gap length on hysteresis ring thickness and stator winding turns is investigated. Effect of air gap length on electrical circuit model is perused. Finally, simulation of AFHM in order to extract the output values of motor and sensitivity analysis on air gap variation is done using 3D-Finite Element Model. Hysteresis loop in the shape of an inclined ellipse is adopted. This study can help designers in design approach of such motors.
文摘This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finite element calcula-tion. Then, the configuration yielding the best performances is integrated and modelled with the whole traction chain under MATLAB/SIMULINK environment in order to demonstrate the motor operation on a large speed band.
基金supported by the Natural Science Foundation of Hubei Province(No.2019 CFB759)。
文摘With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.
基金financed by the Electric'Drive Laboratory,Department of Electrical Engineering,University of Padova,Padova(haly).
文摘This paper describes the electric drive for an in-wheel fractional-slot axial flux machine,designed for achieving a wide flux-weakening operating region.By using a slotted stator with fractional-slot windings and additional cores enclosing end windings,the axial flux machine reaches a wide constant power speed range.The machine is designed for increasing flux-weakening capability while obtaining low harmonic back-electromotive force and low cogging torque.A 10 N.m axial flux machine exhibiting 3 to 1 flux-weakening speed range has been built.A flux-weakening controller,able to maximize the output torque in the flux-weakening region,is designed and implemented.The goodness of both design and control algorithm is proved by experimental tests.However,such a fractional-slot machine has not only advantages.Rotor losses are very high,and they have to be properly considered during the design process.
文摘This study is to explore a composite type piezoelectric motor. Its main structures include the piezoelectric stator, rotor, the preload adjusting module and shaft. Wherein the piezoelectric stator is made base, the composite type actuating element and stator formed. As the composite type actuating element is set by the axial vibration type actuating element, horizontal bending vibration type actuating element and vertical bending vibration type actuating element formed. The stator is an empty cylinder with a waist and tapered hole. In addition, the rotor is a kind of a hollow cone. It can be through the preload adjusting module to withstand the stator. As the preload adjusting module is set by the limit element, spring, washer and nut formed. While the shaft is a kind of cylinder with screw thread and stopper, it can pass through the piezoelectric stator, rotor and the preload adjusting module, making it a composite type piezoelectric motor. When we provide appropriate driving voltage, frequency, loading and phase angle to the piezoelectric stator, we can let the piezoelectric motor produces rapid rotation. Of course, we can also change through the driving phase angle, to change the direction of rotation of the piezoelectric motor. According to the experimental results, we found that its maximum speed and loading are 480 rpm and 2305 gw under conditions of 180 Vp-p, 35 kHz and 00 driving phase angle. Most importantly, we also found that the composite type piezoelectric motor has a very good conversion efficiency of the driving phase angle.
文摘Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model in-cludes all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is paramet-ric and can be used for design process and sensitivity analysis.
文摘针对轴向永磁齿轮电动机(Axial Magnetic Gear Motor,AMGM)整体尺寸偏大导致的转矩密度偏低(≤70 kN·m/m^(3))等缺陷,提出了一种双调制式轴向永磁齿轮电动机(Dual-modulation Axial Magnetic Gear Motor,DAMGM)。采用高速侧及低速侧两个调磁环对DAMGM低速转子进行调制,且两个调磁环中的非导磁部分均为永磁体,有效提高了低速转子的输出转矩;另外,与现有AMGM相比,将驱动电动机置于DAMGM高速永磁转子内部,减小了整体轴向尺寸,大幅提高了低速转子的转矩密度(150 kN·m/m^(3))。针对现有3D有限元计算时间长、计算机资源浪费严重等问题,给出一种基于圆柱坐标系的DAMGM三维分析方法。根据调磁环的3种边界条件,建立了调制后DAMGM气隙磁场及电磁转矩的数理模型,不仅计算结果准确(与3D有限元相比,平均计算误差≤5%),而且计算时间短(仅为3D有限元的1/10),便于DAMGM不同参数结构的分析、比较与优化。
文摘In this paper, we want to make a new type linear piezoelectric motor by mode shape coating or effective electrode surface coating. The mode shape is derived from the mechanical boundary conditions of the linear piezoelectric motor. We only have access to the first three modes of formas, the effective electrode surface coating basis, as well as with the linear piezoelectric motor of normal shape do comparison. Next, we will inspect their gain or axial velocity through theoretical analysis, simulation and experiment. According to the results of the theoretical analysis, we have found that the gain or axial velocity of the linear piezoelectric motors of mode shape is much larger than the linear piezoelectric motors of normal shape. However, according to the results of simulation and experiments, we have found that the gain or axial velocity of the linear piezoelectric motors of mode shape is much greater than the linear piezoelectric motors of normal shape, which is about 1.2 to 1.4 times. The linear piezoelectric motor of mode shape 3 has the fastest axial velocity, which is about -48 mm/s and 48 mm/s under conditions of 180 Vp-p driving voltage, 21.2 kHz driving frequency (the third vibration modal), 25 gw loading and the position of loading or mass at x = 5 mm & 45 mm respectively. And its axial velocity is about 1.4 times the linear piezoelectric motor of normal shape under the same conditions. Overall, the mode shape coating helps to enhance the gain or axial velocity of the linear piezoelectric motor.