Different techniques have been proposed to increase the bearing capacity of open-ended piles.Welding helices to the shaft and tapering the pile shaft could be used simultaneously to enhance the static and dynamic beha...Different techniques have been proposed to increase the bearing capacity of open-ended piles.Welding helices to the shaft and tapering the pile shaft could be used simultaneously to enhance the static and dynamic behaviors of these piles.This paper subjects the bearing capacity,stiffness,frictional behavior,and material efficiency of the tapered helical piles to scrutiny.Tapered helical piles are introduced herein as an alternative option to improve the material efficiency of hollow piles.Based on the Taguchi method,a series of experiments was designed and conducted.The axial responses of tapered helical piles are also investigated using finite element analyses.The results derived from loadedisplacement curves and strain gages are used to characterize the axial compression responses of tapered helical piles.The effects of tapered angle,helices diameter and helices distance are examined using dimensionless parameters,and the degree of contribution of these factors is calculated on each of the enumerated variables individually.Experimental results show that the shaft friction resistance of tapered helical piles increases continuously with the pile head settlement.Furthermore,the effect of tapered wall on the shaft friction resistance is more tangible at low stress levels.The results showed that the relative material efficiency factor of the optimum pile could be 2.5 times that of unoptimized pile with a similar quantity of material.展开更多
A model for the non-linear axial vibrations of the hydrodynamic thrust bearing-rotor system in a turboexpander is described. The axial transient process of the system is investigated. The time-dependent form ofthe Re...A model for the non-linear axial vibrations of the hydrodynamic thrust bearing-rotor system in a turboexpander is described. The axial transient process of the system is investigated. The time-dependent form ofthe Reynolds equation is solved by a finite difference method with successive overrelaxation scheme to obtain the hydrodynamic forces of the sector-shaped thrust bearing (SSTB). Using these forces, the equation of motion is solved by the fourth-order Runge-Kutta method and the Adams method to predict the transient behaviour of the thrust bearing-rotor system (TBRS).Also,the linearized stiffness and damping coefficients of the oil film hydrodynamic SSTB are calculated.The analyses of the axial transient response of the system under both linear and non-linear conditions are performed. The non-linearity of oil film forces can significantly contribute to the axial transient response. Conclusions obtained can be applied for evaluation of the reliability of the TBRS.展开更多
文摘Different techniques have been proposed to increase the bearing capacity of open-ended piles.Welding helices to the shaft and tapering the pile shaft could be used simultaneously to enhance the static and dynamic behaviors of these piles.This paper subjects the bearing capacity,stiffness,frictional behavior,and material efficiency of the tapered helical piles to scrutiny.Tapered helical piles are introduced herein as an alternative option to improve the material efficiency of hollow piles.Based on the Taguchi method,a series of experiments was designed and conducted.The axial responses of tapered helical piles are also investigated using finite element analyses.The results derived from loadedisplacement curves and strain gages are used to characterize the axial compression responses of tapered helical piles.The effects of tapered angle,helices diameter and helices distance are examined using dimensionless parameters,and the degree of contribution of these factors is calculated on each of the enumerated variables individually.Experimental results show that the shaft friction resistance of tapered helical piles increases continuously with the pile head settlement.Furthermore,the effect of tapered wall on the shaft friction resistance is more tangible at low stress levels.The results showed that the relative material efficiency factor of the optimum pile could be 2.5 times that of unoptimized pile with a similar quantity of material.
基金This project is supported by National Natural Science Foundation of China
文摘A model for the non-linear axial vibrations of the hydrodynamic thrust bearing-rotor system in a turboexpander is described. The axial transient process of the system is investigated. The time-dependent form ofthe Reynolds equation is solved by a finite difference method with successive overrelaxation scheme to obtain the hydrodynamic forces of the sector-shaped thrust bearing (SSTB). Using these forces, the equation of motion is solved by the fourth-order Runge-Kutta method and the Adams method to predict the transient behaviour of the thrust bearing-rotor system (TBRS).Also,the linearized stiffness and damping coefficients of the oil film hydrodynamic SSTB are calculated.The analyses of the axial transient response of the system under both linear and non-linear conditions are performed. The non-linearity of oil film forces can significantly contribute to the axial transient response. Conclusions obtained can be applied for evaluation of the reliability of the TBRS.