期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Pivotal Role of Spin in Celestial Body Motion Mechanics: Prelude to a Spinning Universe
1
作者 Puthalath Koroth Raghuprasad 《Journal of High Energy Physics, Gravitation and Cosmology》 2021年第1期98-122,共25页
This is the final article in our series dealing with the interplay of spin and gravity that leads to the generation, and continuation of celestial body motions in the universe. In our prior studies we focused on such ... This is the final article in our series dealing with the interplay of spin and gravity that leads to the generation, and continuation of celestial body motions in the universe. In our prior studies we focused on such interactions in the elementary particles, and in the celestial bodies in the solar system. Foremost among the findings was that, along with gravity, matter at all levels exhibits axial spin. We further noted that all freestanding bodies outside our solar system, including the largest such units, the stars and galaxies also spin on their axes. Also, the axial rotation speed of planets in our solar system has a linear positive relationship to their masses, thus hinting at its fundamental and autonomous nature. We have reported that this relationship between the size of the body and its axial rotation speed extends to the stars and even the galaxies. Next, all congregations of matter spin on their axes in the counterclockwise direction;all satellites orbit their mother bodies also in the counterclockwise direction, <i>i.e.</i>: in our solar system, with only rare exceptions, the satellite bodies follow the mother bodies’ axial rotation. This relationship exists also in the case of the rings of planets, the asteroids and the Kuiper belt bodies, as well as the stars and their galaxies. We also noted the intricate involvements between spin and gravity in the exquisite phenomena of synchronous and negative rotations of planets and some satellites;we have explained in detail how these two phenomena occur. The closest large moons of the gas and ice giants and the earth’s moon exhibit synchronous rotation. In this paper we present evidence that these synchronously rotating satellite bodies’ <b>axial rotation speed</b> is closely related to the size and the axial rotation speeds of their respective mother bodies. In the satellites that follow a non-synchronous rotation (most of the planets and their satellites) the satellites’ own rotation speed usually dominates. In all these rotational/orbital motions, we believe, the axial rotation and gravity collaborate with the resultant centrifugal force, which prevents the satellite bodies from crashing into the mother bodies. We have inferred from the above observations that the axial spin is a fundamental property of matter, akin to gravity, electromagnetism, and strong and weak nuclear forces. This inherent property of matter to spin on its axis is what initiates all celestial body motions and makes such motions perpetual. The lateral motions of stars within the galaxies, are also influenced by the sizes of the stars;the larger the star, the faster it moves radially. Similarly, the larger the spiral galaxy, the faster it rotates on its axis. We extrapolate from these observations that the axial rotational speeds of galaxies affect their motion in space as well, that this is circumferential, and we predict this will also be in the counterclockwise direction. This lateral movement of the galaxies will give the appearance of the whole universe spinning on its axis. 展开更多
关键词 axial rotation Centrifugal Force Counterclockwise Gravity Neutron Stars Proto-Planetary Disk SPIN
下载PDF
A modified VLES model for simulation of rotating separation flow in axial flow rotating machinery 被引量:1
2
作者 Hao-ru Zhao Fu-jun Wang +3 位作者 Chao-yue Wang Chang-liang Ye Zhi-feng Yao Qiang Zhong 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第4期570-584,共15页
The internal flow in an axial flow rotating machinery is affected by the rotating characteristics, often accompanied by a strong rotating separation under small flow conditions. At present, the very large eddy simulat... The internal flow in an axial flow rotating machinery is affected by the rotating characteristics, often accompanied by a strong rotating separation under small flow conditions. At present, the very large eddy simulation (VLES) model commonly used for the separation flow simulation still has certain limitations in simulating such rotating separation flow: (1) The Reynolds stress level is overestimated in the near-wall region. (2) The influence of the rotating effect cannot be effectively considered. The above two limitations affect the simulation accuracy of the VLES model for the rotating separation flow under small flow conditions in the axial flow rotating machinery. The objective of this paper is to provide a new hybrid unsteady Reynolds average Navier-Stokes/large eddy simulation (URANS/LES) model suitable for the simulation of the rotating separation flow in an axial flow rotating machinery. Compared with the original VLES method, the modifications are as follows: (1) A Reynolds stress damping function in the near-wall region is introduced to reduce the overestimation of the Reynolds stress caused by the near-wall Reynolds average Navier-Stokes (RANS) behavior of the VLES model. (2) A control function driven by the vortex is introduced to reflect the influence of the rotating effect. Three typical cases are used to verify the calculation accuracy of the modified model. It is shown that the modified model can capture more turbulent vortices based on the URANS grids, and the prediction accuracy of the rotating separation flow is effectively improved. Compared with the original VLES model, the modified model can accurately predict the head change in the hump region of the axial flow pump. 展开更多
关键词 axial flow rotating machinery rotating separation flow hybrid unsteady Reynolds average Navier-Stokes/large eddy simulation(URANS/LES)model very large eddy simulation(VLES)model
原文传递
A high-order model of rotating stall in axial compressors with inlet distortion 被引量:6
3
作者 Peng LIN Cong WANG Yong WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期898-906,共9页
In this paper,a high-order distortion model is proposed for analyzing the rotating stall inception process induced by inlet distortion in axial compressors.A distortion-generating screen in the compressor inlet is con... In this paper,a high-order distortion model is proposed for analyzing the rotating stall inception process induced by inlet distortion in axial compressors.A distortion-generating screen in the compressor inlet is considered.By assuming a quadratic function for the local flow total pressure-drop,the existing Mansoux model is extended to include the effects of static inlet distortion,and a new high-order distortion model is derived.To illustrate the effectiveness of the distortion model,numerical simulations are performed on an eighteenth-order model.It is demonstrated that long length-scale disturbances emerge out of the distorted background flow,and further induce the onset of rotating stall in advance.In addition,the circumferential non-uniform distribution and time evolution of the axial flow are also shown to be consistent with the existing features.It is thus shown that the high-order distortion model is capable of describing the transient behavior of stall inception and will contribute further to stall detection under inlet distortion. 展开更多
关键词 axial compressors Dynamic modeling Flow instability Inlet distortion Rotating stall Stall inception
原文传递
Numerical Investigation of Effect of Inlet Swirl and Total-pressure Distortion on Performance and Stability of an Axial Transonic Compressor 被引量:1
4
作者 A.Naseri M.Boroomand S.Sammak 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第6期501-510,共10页
This paper represents numerical simulation of flow inside an axial transonic compressor subject to inlet flow distortion,to evaluate its effect on compressor performance and stability.Two types of inlet distortion,nam... This paper represents numerical simulation of flow inside an axial transonic compressor subject to inlet flow distortion,to evaluate its effect on compressor performance and stability.Two types of inlet distortion,namely inlet swirl and total pressure distortion are investigated.To study the effect of combined distortion patterns,different combinations of inlet swirl and total pressure distortion are also studied.Results for cases with total pressure distortion indicate that hub radial distortion improves stability range of the compressor while tip radial distortion deteriorates it.An explanation for this observation is presented based on redistribution of flow parameters caused by distortion and the way it interacts with stall inception mechanisms in a transonic axial compressor.Results also show that while co-swirl patterns slightly improve stability range of the compressor,counter-swirl patterns diminish it.Study of combined distortion cases reveals that superimposition of effects of each individual pattern could predict the effect of a combined pattern on compressor's performance within an accuracy of 1%.However,it is unable to predict the associated effect on compressor's stability. 展开更多
关键词 compressor stall distortion blade inlet axial radial rotor rotating counter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部