Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved...Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations.展开更多
Based on the nonlocal strain gradient theory(NSGT),the static bending behaviors of an axially functionally graded(AFG)Bernoulli-Euler microbeam subjected to concentrated and distributed loads are studied.The material ...Based on the nonlocal strain gradient theory(NSGT),the static bending behaviors of an axially functionally graded(AFG)Bernoulli-Euler microbeam subjected to concentrated and distributed loads are studied.The material property of the AFG microbeam changes continuously along the longitudinal direction.On the basis of the minimum potential energy principle,the equations of motion and associated classical and non-classical boundary conditions are derived.Then,Galerkin’s weighted residual method in conjunction with the normalization technique are utilized to solve the governing differential equations.The transverse deformations of the AFG microbeam suffering the sinusoidal distributed load within the framework of NSGT,nonlocal elasticity theory(NET),strain gradient theory(SGT)and classical elasticity theory(CET)are compared.It is observed that the bending flexibility of the microbeam decreases with the increase in the ratio of the material length scale parameter to the beam height.However,the bending flexibility increases with the increase in the material nonlocal parameter.The functionally graded parameter plays an important role in controlling the transverse deformation.This study provides a theoretical basis and a technical reference for the design and analysis of AFG micro-beams in the related regions.展开更多
In present work, post-buckling behavior of imperfect (of eigen form) laminated composite cylindrical shells with different L/D and R/t ratios subjected to axial, bending and torsion loads has been investigated by usin...In present work, post-buckling behavior of imperfect (of eigen form) laminated composite cylindrical shells with different L/D and R/t ratios subjected to axial, bending and torsion loads has been investigated by using an equilibrium path approach in the finite element analysis. The Newton-Raphson approach as well as the arc-length approach is used to ensure the correctness of the equilibrium paths up to the limit point load. Post-buckling behavior of imperfect cylindrical shells with different L/D and R/t ratios of interest is obtained and the theoretical knock-down factors are reported for the considered cylindrical shells.展开更多
Although smoothness, softness, and stiffness determine the physical and mechanical behavior of a fabric and the subjective assessment of quality when it is handled, the perceived comfort of clothing is more important ...Although smoothness, softness, and stiffness determine the physical and mechanical behavior of a fabric and the subjective assessment of quality when it is handled, the perceived comfort of clothing is more important to consumers. The sensations perceived from the contact of clothing with the skin can greatly influence our over-all state of comfort and one aspect of this is the unpleasant skin sensation of prickle. Surface prickle of fabrics can be a factor limiting the use of the coarser types of ramie in apparel. And the mechanical stimulus of fabric-evoked prickle underlies our discomfort to fabrics independent in the majority of cases of any chemical or the atopic status of the individual. It is known that the prickle of fabric can be reduced by fabric-finishing treatments, but the assessment of fabric prickle is often done subjectively. This is time consuming, and it is difficult to obtain reliable and reproducible results, since variability between subjects in their sensitivity to prickle, such as skin mechanical properties, effective density of nociceptors and the mood state of the individual. In order to find an objective method of measuring the physical properties of the stiff fiber ends protruding from the fabrics to predict prickle, axial compression bending tests were examined by using single ramie fiber. By comparing analysis, it is found that the critical compressing load (Pcr), the bending modulus (E) are the important parameters. The relationship of the critical load (Pcr) with the length of fiber (L) and the fineness of fiber (Nt) has been investigated.展开更多
A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failur...A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.展开更多
This paper presents development of 3D non-linear finite element model to simulate the response and predict the behavior of un-bonded mild steel bars under axial and bending loading. The models were successfully analyz...This paper presents development of 3D non-linear finite element model to simulate the response and predict the behavior of un-bonded mild steel bars under axial and bending loading. The models were successfully analyzed with the finite element software ANSYS, taking into account the nonlinear material properties of the reinforced mild steel bars. A bending strain relationship is derived based on a parametric study involving multiple nonlinear finite element models. A mild steel fracture criterion based on low-cycle fatigue models is proposed to control the total (elastic and plastic) strains in the mild steel bar below a maximum permissible limit. In addition, FE predictions of bar elongation due to strain penetration reasonably agreed with a proposed empirical equation by Raynor and Lehman. It was concluded that the equation proposed by Raynor and Lehman is considered valid for estimating the additional unbounded length and can be used in both analysis and design.展开更多
We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench.Inversions were conducted to obtain best-fitting solutions of trench-axi...We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench.Inversions were conducted to obtain best-fitting solutions of trench-axis loadings and variations in the effective elastic plate thickness for the analyzed flexural bending profiles.Results of the analyses revealed significant along-trench variations in plate flexural bending:the trench relief(W0)of 1.9 to 5.1 km;trench-axis vertical loading(V0)of-0.5×10^12 to 2.2×10^12 N/m;axial bending moment(M0)of 0.1×10^17 to 2.2×10^17 N;effective elastic plate thickness seaward of the outer-rise region(Te^M)of 20 to 65 km,trench-ward of the outer-rise(Te^M)of 11 to 33 km,and the transition distance(Xr)of 20 to 95 km.The Horizon Deep,the second greatest trench depth in the world,has the greatest trench relief(W0 of 5.1km)and trench-axis loading(V0 of 2.2×10^12N/m);these values are only slightly smaller than that of the Challenger Deep(W0 of 5.7km and V0 of 2.9×10^12N/m)and similar to that of the Sirena Deep(W0 of 5.2 km and V0 of 2.0×10^12 N/m)of the Mariana Trench,suggesting that these deeps are linked to great flexural bending of the subducting plates.Analyses using three independent methods,i.e.,the/inversion,the flexural curvature/yield strength envelope analysis,and the elasto-plastic bending model with normal faults,all yielded similar average Te reduction of 28%-36% and average Te reduction area S△Te of 1195-1402 km^2 near the trench axis.The calculated brittle yield zone depth from the flexural curvature/yield strength envelope analysis is also consistent with the distribution of the observed normal faulting earthquakes.Comparisons of the Manila,Philippine,Tonga-Kermadec,Japan,and Mariana Trenches revealed that the average values Te^M of Te^M and both in general increase with the subducting plate age.展开更多
Wood anatomical structures of various tree species help identify the wood. The characteristics and composition of these structures affect their utilisation. In this work, the microstructure of Blighia sapida a lesser-...Wood anatomical structures of various tree species help identify the wood. The characteristics and composition of these structures affect their utilisation. In this work, the microstructure of Blighia sapida a lesser-known Ghanaian hardwood species using light microscope and scanning electron microscope (SEM) was studied. The relationship between the microstructure and some physical properties such as density, and bending strength were also studied. The anatomical features studied were fibre length, double fibre wall thickness, fibre proportion, vessel diameter and proportion, rays and axial parenchyma proportions. It was observed that the use of SEM in studying the anatomical or ultra-structural aspects of wood gives a clearer understanding of the features and structures found in wood. Anatomical features such as presence of crystals and absence of axial parenchyma in Blighia sapida are reported in the work. The study also established that Blighia sapida had a low water uptake even though it had vessel distribution of 12 vessels/mm<sup>2</sup>. Having not very distinct axial parenchyma may have accounted for the low water uptake. The presence of occluded pits could also account for the low water uptake and the fibre wall thickness may also account for a medium bending strength of 62.8 N/mm<sup>2</sup> at 12% moisture content.展开更多
基金Project(U0834002) supported by the Joint Funds of the National Nature Science Foundation of China and Guangdong ProvinceProject (2009ZM0134) supported by the Foundational Research Funds for the Central Universities in China
文摘Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations.
基金The National Key Research and Development Program of China(No.2017YFC0307604)the Talent Foundation of China University of Petroleum(No.Y1215042)
文摘Based on the nonlocal strain gradient theory(NSGT),the static bending behaviors of an axially functionally graded(AFG)Bernoulli-Euler microbeam subjected to concentrated and distributed loads are studied.The material property of the AFG microbeam changes continuously along the longitudinal direction.On the basis of the minimum potential energy principle,the equations of motion and associated classical and non-classical boundary conditions are derived.Then,Galerkin’s weighted residual method in conjunction with the normalization technique are utilized to solve the governing differential equations.The transverse deformations of the AFG microbeam suffering the sinusoidal distributed load within the framework of NSGT,nonlocal elasticity theory(NET),strain gradient theory(SGT)and classical elasticity theory(CET)are compared.It is observed that the bending flexibility of the microbeam decreases with the increase in the ratio of the material length scale parameter to the beam height.However,the bending flexibility increases with the increase in the material nonlocal parameter.The functionally graded parameter plays an important role in controlling the transverse deformation.This study provides a theoretical basis and a technical reference for the design and analysis of AFG micro-beams in the related regions.
文摘In present work, post-buckling behavior of imperfect (of eigen form) laminated composite cylindrical shells with different L/D and R/t ratios subjected to axial, bending and torsion loads has been investigated by using an equilibrium path approach in the finite element analysis. The Newton-Raphson approach as well as the arc-length approach is used to ensure the correctness of the equilibrium paths up to the limit point load. Post-buckling behavior of imperfect cylindrical shells with different L/D and R/t ratios of interest is obtained and the theoretical knock-down factors are reported for the considered cylindrical shells.
文摘Although smoothness, softness, and stiffness determine the physical and mechanical behavior of a fabric and the subjective assessment of quality when it is handled, the perceived comfort of clothing is more important to consumers. The sensations perceived from the contact of clothing with the skin can greatly influence our over-all state of comfort and one aspect of this is the unpleasant skin sensation of prickle. Surface prickle of fabrics can be a factor limiting the use of the coarser types of ramie in apparel. And the mechanical stimulus of fabric-evoked prickle underlies our discomfort to fabrics independent in the majority of cases of any chemical or the atopic status of the individual. It is known that the prickle of fabric can be reduced by fabric-finishing treatments, but the assessment of fabric prickle is often done subjectively. This is time consuming, and it is difficult to obtain reliable and reproducible results, since variability between subjects in their sensitivity to prickle, such as skin mechanical properties, effective density of nociceptors and the mood state of the individual. In order to find an objective method of measuring the physical properties of the stiff fiber ends protruding from the fabrics to predict prickle, axial compression bending tests were examined by using single ramie fiber. By comparing analysis, it is found that the critical compressing load (Pcr), the bending modulus (E) are the important parameters. The relationship of the critical load (Pcr) with the length of fiber (L) and the fineness of fiber (Nt) has been investigated.
文摘A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.
文摘This paper presents development of 3D non-linear finite element model to simulate the response and predict the behavior of un-bonded mild steel bars under axial and bending loading. The models were successfully analyzed with the finite element software ANSYS, taking into account the nonlinear material properties of the reinforced mild steel bars. A bending strain relationship is derived based on a parametric study involving multiple nonlinear finite element models. A mild steel fracture criterion based on low-cycle fatigue models is proposed to control the total (elastic and plastic) strains in the mild steel bar below a maximum permissible limit. In addition, FE predictions of bar elongation due to strain penetration reasonably agreed with a proposed empirical equation by Raynor and Lehman. It was concluded that the equation proposed by Raynor and Lehman is considered valid for estimating the additional unbounded length and can be used in both analysis and design.
基金The National Natural Science Foundation of China under contract Nos 41976064,91958211,41890813,91858207,91628301,U1606401,41976066 and 41706056the Programs of the Chinese Academy of Sciences under contract Nos Y4SL021001,QYZDY-SSW-DQC005 and 133244KYSB20180029+1 种基金the National Key Research and Development Program of China under contract Nos2018YFC0309800 and 2018YFC0310100the China Ocean Mineral Resources R&D Association under contract No.DY135-S2-1-04
文摘We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench.Inversions were conducted to obtain best-fitting solutions of trench-axis loadings and variations in the effective elastic plate thickness for the analyzed flexural bending profiles.Results of the analyses revealed significant along-trench variations in plate flexural bending:the trench relief(W0)of 1.9 to 5.1 km;trench-axis vertical loading(V0)of-0.5×10^12 to 2.2×10^12 N/m;axial bending moment(M0)of 0.1×10^17 to 2.2×10^17 N;effective elastic plate thickness seaward of the outer-rise region(Te^M)of 20 to 65 km,trench-ward of the outer-rise(Te^M)of 11 to 33 km,and the transition distance(Xr)of 20 to 95 km.The Horizon Deep,the second greatest trench depth in the world,has the greatest trench relief(W0 of 5.1km)and trench-axis loading(V0 of 2.2×10^12N/m);these values are only slightly smaller than that of the Challenger Deep(W0 of 5.7km and V0 of 2.9×10^12N/m)and similar to that of the Sirena Deep(W0 of 5.2 km and V0 of 2.0×10^12 N/m)of the Mariana Trench,suggesting that these deeps are linked to great flexural bending of the subducting plates.Analyses using three independent methods,i.e.,the/inversion,the flexural curvature/yield strength envelope analysis,and the elasto-plastic bending model with normal faults,all yielded similar average Te reduction of 28%-36% and average Te reduction area S△Te of 1195-1402 km^2 near the trench axis.The calculated brittle yield zone depth from the flexural curvature/yield strength envelope analysis is also consistent with the distribution of the observed normal faulting earthquakes.Comparisons of the Manila,Philippine,Tonga-Kermadec,Japan,and Mariana Trenches revealed that the average values Te^M of Te^M and both in general increase with the subducting plate age.
文摘Wood anatomical structures of various tree species help identify the wood. The characteristics and composition of these structures affect their utilisation. In this work, the microstructure of Blighia sapida a lesser-known Ghanaian hardwood species using light microscope and scanning electron microscope (SEM) was studied. The relationship between the microstructure and some physical properties such as density, and bending strength were also studied. The anatomical features studied were fibre length, double fibre wall thickness, fibre proportion, vessel diameter and proportion, rays and axial parenchyma proportions. It was observed that the use of SEM in studying the anatomical or ultra-structural aspects of wood gives a clearer understanding of the features and structures found in wood. Anatomical features such as presence of crystals and absence of axial parenchyma in Blighia sapida are reported in the work. The study also established that Blighia sapida had a low water uptake even though it had vessel distribution of 12 vessels/mm<sup>2</sup>. Having not very distinct axial parenchyma may have accounted for the low water uptake. The presence of occluded pits could also account for the low water uptake and the fibre wall thickness may also account for a medium bending strength of 62.8 N/mm<sup>2</sup> at 12% moisture content.