Improving the suction performance of centrifugal pumps by using jetting device is presented. The theoretical analysis, experimental study and engineering implementation show that suction performance of centrifugal pum...Improving the suction performance of centrifugal pumps by using jetting device is presented. The theoretical analysis, experimental study and engineering implementation show that suction performance of centrifugal pump can be improved with jetting device and be used for delivering the liquid media requiring high suction performance, whereas the efficiency and head of the pump will decrease a little. The effect of feed-back jetting on suction performance is the most obvious at design point. The suitable rate of feed-back flow is 2%-5%.展开更多
The experimental investigation of axial-flow pump has been rapidly developed to meet the needs of South-to-North Water Diversion Project of China. Owing to the boundary conditions of hub, blade tip clearance, much of ...The experimental investigation of axial-flow pump has been rapidly developed to meet the needs of South-to-North Water Diversion Project of China. Owing to the boundary conditions of hub, blade tip clearance, much of the physical phenomena and laws involved in this complex flow field can't be fully determined. The flow characteristics of the high efficiency axial-flow pump have been simulated by RNG k-e turbulence model and SIMPLEC arithmetic based on FLUENT software. Numerical results indicate that the data from the prediction show agreement with the experimental results, static pressure on pressure side of blades increases slightly at circumferential direction with radius increasing, and keep almost constant at the same radial while increasing gradually from inlet to exit on the suction side along flow direction at design conditions. The static pressure, total pressure and velocity at inlet, impeller outlet and vane outlet were measured by a five-hole probe, and a contrastive experiment was done to investigate the influence of hub leakage. The experimental results show that inlet flow is almost axial and the prerotation is very small at various conditions. The meridional velocity and circulation distribution are almost identical at impeller outlet at design conditions due to steady flow and high efficiency. The residual circulation exits at downstream of the guide vane, and the circumferential velocity component increases linearly from hub to tip at small flow rate conditions. Hub leakage in adjustable blades results in the decrease of the meridional velocity and circulation at blade exit near hub. The results of numerical simulation and experiments supply important flow structure information for the high-efficiency axial-flow pump.展开更多
Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Theref...Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Therefore this paper introduces the new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device, projects a design of such control system based on PLC, and determines the principle of the control system, the execution software and the design flow. Site commissioning effect on Daqing Oilfield shows this fan-shaped adaptive balancing intelligent device can effectively adjust and monitor the pumping unit in real time, the balance even adjusts from 0.787 to 0.901, and integrated energy saving rate is 14.2%. It is approved that this control device is professionally designed, with strong compatibility, and high reliability.展开更多
Left ventricular assist device( LVAD) in this study is a mechanical tool that is used to support blood flow in the patient with heart disease. It supports left ventricle by building up the pressure to the pump outlet ...Left ventricular assist device( LVAD) in this study is a mechanical tool that is used to support blood flow in the patient with heart disease. It supports left ventricle by building up the pressure to the pump outlet connected to the aorta. This pump was designed based on the magnetic driven centrifugal pump with a unique small washout hole constructed inside the impeller to generate the washout flow passage to prevent the stagnation at the region underneath and around the rotor. Computational fluid dynamics( CFD) was adopted in this study to assess the performance and optimize the design to avoid recirculation and high shear stress which is the main cause of stagnation and blood damage. Transient simulation was used for this study due to the asymmetric design of the washout hole and the complication of the bottom support of the impeller that has a risk of thrombosis,also,it was used to predict the variation of hydraulic performance caused by the rotation of the impeller and pulsed flow at the pump inlet. The simulation results show no excessive stress and no recirculation observed within the computational domain; in addition,the research result also provides information for further optimization and development to the pump.展开更多
Objectives To evaluate retrospectively the potential benefits of combined utilization of various assisted circulation devices in cardiac arrest patients who did not respond to conventional cardiopulmonary cerebral res...Objectives To evaluate retrospectively the potential benefits of combined utilization of various assisted circulation devices in cardiac arrest patients who did not respond to conventional cardiopulmonary cerebral resuscitation (CPCR). Methods Assisted circulation devices, including emergency cardiopulmonary bypass (ECPB), intra-aortic balloon pump (IABP), and left ventricular assist device (LVAD), were applied to 16 adult patients who had cardiac arrest 82 rain-56 h after open heart surgery and did not respond to 20 rain or longer conventional CPCR. ECPB was applied to 2 patients, ECPB plus IABP to 8 patients, ECPB plus IABP and LVAD to 6 patients. Results One patient recovered fully and one patient died. Of the other 14 patients, 13 resumed spontaneous cardiac rhythm and one did not; none of them could be weaned from ECPB. Further treatment of the 14 patients with combinations of assisted circulation devices enabled 6 patients to recover. One of the 7 recovered patients died of reoccurring cardiac arrest after 11 days; the other 6 were discharged in good condition and were followed up for 3-49 months (mean =22 months). Of the 6 discharged patients one suffered cerebral embolism during LVAD treatment, resulting in mild limitation of mobility of the right limbs ; the other 5 never manifested any central nervous system complications. There was no late deaths giving a 37.5% (6/16) long-term survival rate. Conclusions ECPB could effectively reestablish blood circulation and oxygen supply, rectify acidosis, and improve internal milieu. The combined utilization of ECPB, IABP, and LVAD reduces the duration of ECPB, improves the incidence of recovery, and offers beneficial alternatives to refractory cardiac arrest patients.展开更多
Background: Elastomeric pumps (elastic balls into which analgesics or antibiotics can be inserted) push medicines through a catheter to a nerve or blood vessel. Since elastomeric pumps are small and need no power sour...Background: Elastomeric pumps (elastic balls into which analgesics or antibiotics can be inserted) push medicines through a catheter to a nerve or blood vessel. Since elastomeric pumps are small and need no power source, they fit easily into a pocket during infusion, allowing patient mobility. Elastomeric pumps are widely used and widely studied experimentally, but they have well-known problems, such as maintaining reliable flow rates and avoiding toxicity or other peak-and-trough effects. Objectives: Our research objective is to develop a realistic theoretical model of an elastomeric pump, analyze its flow rates, determine its toxicity conditions, and otherwise improve its operation. We believe this is the first such theoretical model of an elastomeric pump consisting of an elastic, medicine-filled ball attached to a horizontal catheter. Method: Our method is to model the system as a quasi-Poiseuille flow driven by the pressure drop generated by the elastic sphere. We construct an engineering model of the pressure exerted by an elastic sphere and match it to a solution of the one-dimensional radial Navier-Stokes equation that describes flow through a horizontal, cylindrical tube. Results: Our results are that the model accurately reproduces flow rates obtained in clinical studies. We also discover that the flow rate has an unavoidable maximum, which we call the “toxicity bump”, when the radius of the sphere approaches its terminal, unstretched value—an effect that has been observed experimentally. Conclusions: We conclude that by choosing the properties of an elastomeric pump, the toxicity bump can be restricted to less than 10% of the earlier, relatively constant flow rate. Our model also produces a relation between the length of time that the analgesic fluid infuses and the physical properties of the fluid, of the elastomeric sphere and the tube, and of the blood vessel into which the analgesic infuses. From these, we conclude that elastomeric pumps can be designed, using our simple model, to control infusion times while avoiding toxicity effects.展开更多
This paper shows the blood flow control (FwC) performance to adjust rotational speed of an ICBP (implantable centrifugal blood pump) in order to provide an adequate flow to left ventricle in different patient cond...This paper shows the blood flow control (FwC) performance to adjust rotational speed of an ICBP (implantable centrifugal blood pump) in order to provide an adequate flow to left ventricle in different patient conditions. ICBP is a totally implantable LVAD (left ventricular assist device) with ceramic bearings developed for long term circulatory assistance. FwC uses PI (proportional-integral) control to adjust rotational speed in order to provide blood flow. FwC does not use sensor for feedback, as there is an estimation system to provide blood flow measurement. Control strategy has being studied in a HCS (hybrid cardiovascular simulator) as a tool that allows the physical connection of ICBP during evaluation. In addition, HCS allows changes of some cardiovascular parameters in order to simulate specific heart disease: ejection fraction (10-25%) and heart rate (50-110 bpm). FwC was able to adjust blood flow with steady error less than 2%. Results demonstrated that FwC is adequate to LVAD control irL different left ventricle failure conditions.展开更多
In order to study the mechanism of the vortex generation at the bottom of the pump sump below the flare tube,twenty pressure pulsation monitoring points were arranged at the bottom of the pump sump below the flare tub...In order to study the mechanism of the vortex generation at the bottom of the pump sump below the flare tube,twenty pressure pulsation monitoring points were arranged at the bottom of the pump sump below the flare tube,and the pressure fluctuation experiments were carried out under different flow conditions.The experimental results show that the frequency of pressure fluctuation at the bottom of the pump sump is twice of the rotational frequency of the impeller blade.The vortex below the flare tube is easy to generate under the large flow conditions and mainly concentrates at the right front position below the flare tube.The position of the vortex occurring is corresponding to the position of the low-pressure region below flare tube.展开更多
This study aimed to explore the characteristics of perioperative nursing of experimental goats using self-made axial-flow blood pump implantation and provided theoretical nursing knowledge and practice-based evidence ...This study aimed to explore the characteristics of perioperative nursing of experimental goats using self-made axial-flow blood pump implantation and provided theoretical nursing knowledge and practice-based evidence for the clinical application of domestically manufactured artificial cardiac pumps. Methods: Seven experimental goats were used in this study, three for pre-testing and four for the formal experiments. According to the surgical requirements for axial-flow blood pump implantation into the cardiac apex, we creatively designed and made a series of highly practical animal surgical instruments including a composite disassemblable bed for experimental animal transferring and monitoring, a multifunctional animal surgery bed, and portable medical supporting equipment. We also applied for two national invention patents and one utility model patent. Active measures were taken to ensure careful preparation before surgery, close collaboration during surgery, and effective management of complications after surgery. Results: Two of the four experimental goats died during surgery because of a massive hemorrhage caused by distal anastomotic failure and air embolism-induced cardiac arrest caused by air leakage from the outlet into the heart due to poor connection of the auxiliary pressure tap (used to measure left ventricular pressure). The mean survival time of the remaining three experimental goats was 22.7 hours. Conclusion: This study was the first to systematically and comprehensively investigate the perioperative nursing management of axial-flow blood pump implantation using animal models. These findings could greatly promote further clinical applied nursing research of self-made artificial cardiac pump implantation in experimental goats.展开更多
文摘Improving the suction performance of centrifugal pumps by using jetting device is presented. The theoretical analysis, experimental study and engineering implementation show that suction performance of centrifugal pump can be improved with jetting device and be used for delivering the liquid media requiring high suction performance, whereas the efficiency and head of the pump will decrease a little. The effect of feed-back jetting on suction performance is the most obvious at design point. The suitable rate of feed-back flow is 2%-5%.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA05Z207)National Science and Technology Support Scheme of China (Grant No. 2008BAF34B10)Jiangsu Provincial Graduate Student Innovation Foundation of China (Grant No. CX08B_064Z)
文摘The experimental investigation of axial-flow pump has been rapidly developed to meet the needs of South-to-North Water Diversion Project of China. Owing to the boundary conditions of hub, blade tip clearance, much of the physical phenomena and laws involved in this complex flow field can't be fully determined. The flow characteristics of the high efficiency axial-flow pump have been simulated by RNG k-e turbulence model and SIMPLEC arithmetic based on FLUENT software. Numerical results indicate that the data from the prediction show agreement with the experimental results, static pressure on pressure side of blades increases slightly at circumferential direction with radius increasing, and keep almost constant at the same radial while increasing gradually from inlet to exit on the suction side along flow direction at design conditions. The static pressure, total pressure and velocity at inlet, impeller outlet and vane outlet were measured by a five-hole probe, and a contrastive experiment was done to investigate the influence of hub leakage. The experimental results show that inlet flow is almost axial and the prerotation is very small at various conditions. The meridional velocity and circulation distribution are almost identical at impeller outlet at design conditions due to steady flow and high efficiency. The residual circulation exits at downstream of the guide vane, and the circumferential velocity component increases linearly from hub to tip at small flow rate conditions. Hub leakage in adjustable blades results in the decrease of the meridional velocity and circulation at blade exit near hub. The results of numerical simulation and experiments supply important flow structure information for the high-efficiency axial-flow pump.
文摘Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Therefore this paper introduces the new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device, projects a design of such control system based on PLC, and determines the principle of the control system, the execution software and the design flow. Site commissioning effect on Daqing Oilfield shows this fan-shaped adaptive balancing intelligent device can effectively adjust and monitor the pumping unit in real time, the balance even adjusts from 0.787 to 0.901, and integrated energy saving rate is 14.2%. It is approved that this control device is professionally designed, with strong compatibility, and high reliability.
文摘Left ventricular assist device( LVAD) in this study is a mechanical tool that is used to support blood flow in the patient with heart disease. It supports left ventricle by building up the pressure to the pump outlet connected to the aorta. This pump was designed based on the magnetic driven centrifugal pump with a unique small washout hole constructed inside the impeller to generate the washout flow passage to prevent the stagnation at the region underneath and around the rotor. Computational fluid dynamics( CFD) was adopted in this study to assess the performance and optimize the design to avoid recirculation and high shear stress which is the main cause of stagnation and blood damage. Transient simulation was used for this study due to the asymmetric design of the washout hole and the complication of the bottom support of the impeller that has a risk of thrombosis,also,it was used to predict the variation of hydraulic performance caused by the rotation of the impeller and pulsed flow at the pump inlet. The simulation results show no excessive stress and no recirculation observed within the computational domain; in addition,the research result also provides information for further optimization and development to the pump.
文摘Objectives To evaluate retrospectively the potential benefits of combined utilization of various assisted circulation devices in cardiac arrest patients who did not respond to conventional cardiopulmonary cerebral resuscitation (CPCR). Methods Assisted circulation devices, including emergency cardiopulmonary bypass (ECPB), intra-aortic balloon pump (IABP), and left ventricular assist device (LVAD), were applied to 16 adult patients who had cardiac arrest 82 rain-56 h after open heart surgery and did not respond to 20 rain or longer conventional CPCR. ECPB was applied to 2 patients, ECPB plus IABP to 8 patients, ECPB plus IABP and LVAD to 6 patients. Results One patient recovered fully and one patient died. Of the other 14 patients, 13 resumed spontaneous cardiac rhythm and one did not; none of them could be weaned from ECPB. Further treatment of the 14 patients with combinations of assisted circulation devices enabled 6 patients to recover. One of the 7 recovered patients died of reoccurring cardiac arrest after 11 days; the other 6 were discharged in good condition and were followed up for 3-49 months (mean =22 months). Of the 6 discharged patients one suffered cerebral embolism during LVAD treatment, resulting in mild limitation of mobility of the right limbs ; the other 5 never manifested any central nervous system complications. There was no late deaths giving a 37.5% (6/16) long-term survival rate. Conclusions ECPB could effectively reestablish blood circulation and oxygen supply, rectify acidosis, and improve internal milieu. The combined utilization of ECPB, IABP, and LVAD reduces the duration of ECPB, improves the incidence of recovery, and offers beneficial alternatives to refractory cardiac arrest patients.
文摘Background: Elastomeric pumps (elastic balls into which analgesics or antibiotics can be inserted) push medicines through a catheter to a nerve or blood vessel. Since elastomeric pumps are small and need no power source, they fit easily into a pocket during infusion, allowing patient mobility. Elastomeric pumps are widely used and widely studied experimentally, but they have well-known problems, such as maintaining reliable flow rates and avoiding toxicity or other peak-and-trough effects. Objectives: Our research objective is to develop a realistic theoretical model of an elastomeric pump, analyze its flow rates, determine its toxicity conditions, and otherwise improve its operation. We believe this is the first such theoretical model of an elastomeric pump consisting of an elastic, medicine-filled ball attached to a horizontal catheter. Method: Our method is to model the system as a quasi-Poiseuille flow driven by the pressure drop generated by the elastic sphere. We construct an engineering model of the pressure exerted by an elastic sphere and match it to a solution of the one-dimensional radial Navier-Stokes equation that describes flow through a horizontal, cylindrical tube. Results: Our results are that the model accurately reproduces flow rates obtained in clinical studies. We also discover that the flow rate has an unavoidable maximum, which we call the “toxicity bump”, when the radius of the sphere approaches its terminal, unstretched value—an effect that has been observed experimentally. Conclusions: We conclude that by choosing the properties of an elastomeric pump, the toxicity bump can be restricted to less than 10% of the earlier, relatively constant flow rate. Our model also produces a relation between the length of time that the analgesic fluid infuses and the physical properties of the fluid, of the elastomeric sphere and the tube, and of the blood vessel into which the analgesic infuses. From these, we conclude that elastomeric pumps can be designed, using our simple model, to control infusion times while avoiding toxicity effects.
文摘This paper shows the blood flow control (FwC) performance to adjust rotational speed of an ICBP (implantable centrifugal blood pump) in order to provide an adequate flow to left ventricle in different patient conditions. ICBP is a totally implantable LVAD (left ventricular assist device) with ceramic bearings developed for long term circulatory assistance. FwC uses PI (proportional-integral) control to adjust rotational speed in order to provide blood flow. FwC does not use sensor for feedback, as there is an estimation system to provide blood flow measurement. Control strategy has being studied in a HCS (hybrid cardiovascular simulator) as a tool that allows the physical connection of ICBP during evaluation. In addition, HCS allows changes of some cardiovascular parameters in order to simulate specific heart disease: ejection fraction (10-25%) and heart rate (50-110 bpm). FwC was able to adjust blood flow with steady error less than 2%. Results demonstrated that FwC is adequate to LVAD control irL different left ventricle failure conditions.
基金China Nature Science Funds(51279173)“The 12th Five-year”Key Project of National Science and Technology Support Plan(2015BAD20B01)Jiangsu Water Conservancy Science and Technology Project(2017031)
文摘In order to study the mechanism of the vortex generation at the bottom of the pump sump below the flare tube,twenty pressure pulsation monitoring points were arranged at the bottom of the pump sump below the flare tube,and the pressure fluctuation experiments were carried out under different flow conditions.The experimental results show that the frequency of pressure fluctuation at the bottom of the pump sump is twice of the rotational frequency of the impeller blade.The vortex below the flare tube is easy to generate under the large flow conditions and mainly concentrates at the right front position below the flare tube.The position of the vortex occurring is corresponding to the position of the low-pressure region below flare tube.
文摘This study aimed to explore the characteristics of perioperative nursing of experimental goats using self-made axial-flow blood pump implantation and provided theoretical nursing knowledge and practice-based evidence for the clinical application of domestically manufactured artificial cardiac pumps. Methods: Seven experimental goats were used in this study, three for pre-testing and four for the formal experiments. According to the surgical requirements for axial-flow blood pump implantation into the cardiac apex, we creatively designed and made a series of highly practical animal surgical instruments including a composite disassemblable bed for experimental animal transferring and monitoring, a multifunctional animal surgery bed, and portable medical supporting equipment. We also applied for two national invention patents and one utility model patent. Active measures were taken to ensure careful preparation before surgery, close collaboration during surgery, and effective management of complications after surgery. Results: Two of the four experimental goats died during surgery because of a massive hemorrhage caused by distal anastomotic failure and air embolism-induced cardiac arrest caused by air leakage from the outlet into the heart due to poor connection of the auxiliary pressure tap (used to measure left ventricular pressure). The mean survival time of the remaining three experimental goats was 22.7 hours. Conclusion: This study was the first to systematically and comprehensively investigate the perioperative nursing management of axial-flow blood pump implantation using animal models. These findings could greatly promote further clinical applied nursing research of self-made artificial cardiac pump implantation in experimental goats.