The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary co...The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary conditions, respectively. The implementation of GITT approach for analyzing the forced vibration equation eliminates the space variable and leads to systems of second-order ordinary differential equations (ODEs) in time. The MATHEMATICA built-in function, NDSolve, is used to numerically solve the resulting transformed ODE system. The good convergence behavior of the suggested eigenfunction expansions is demonstrated for calculating the transverse deflection and the angle of rotation of the beam cross-section. Moreover, parametric studies are performed to analyze the effects of the axially moving speed, the axial tension, and the amplitude of external distributed force on the vibration amplitude of axially moving Timoshenko beams.展开更多
Complex modes and traveling waves in axially moving Timoshenko beams are studied. Due to the axially moving velocity, complex modes emerge instead of real value modes. Correspondingly, traveling waves are present for ...Complex modes and traveling waves in axially moving Timoshenko beams are studied. Due to the axially moving velocity, complex modes emerge instead of real value modes. Correspondingly, traveling waves are present for the axially moving material while standing waves dominate in the traditional static structures. The analytical results obtained in this study are verified with a numerical differential quadrature method.展开更多
An exact solution for supercritical thermal configurations of axially moving Timoshenko beams with arbitrary boundary conditions is presented. The geometric nonlinearity and temperature variation of the traveling beam...An exact solution for supercritical thermal configurations of axially moving Timoshenko beams with arbitrary boundary conditions is presented. The geometric nonlinearity and temperature variation of the traveling beams in supercritical regime is considered. Then, the nonlinear buckling problem is solved. A closed-form solution for the supercritical thermal configuration in terms of the axial speed,stiffness and thermal expansion is obtained.Some typical boundary conditions,such as fixed-fixed and pinnedpinned are discussed. More importantly, based on the exact solution,a new anti-symmetric thermal configuration for the fixedfixed axially moving Timoshenko beams is found.展开更多
基金Project supported by the Science Foundation of China University of Petroleum in Beijing(No.2462013YJRC003)
文摘The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary conditions, respectively. The implementation of GITT approach for analyzing the forced vibration equation eliminates the space variable and leads to systems of second-order ordinary differential equations (ODEs) in time. The MATHEMATICA built-in function, NDSolve, is used to numerically solve the resulting transformed ODE system. The good convergence behavior of the suggested eigenfunction expansions is demonstrated for calculating the transverse deflection and the angle of rotation of the beam cross-section. Moreover, parametric studies are performed to analyze the effects of the axially moving speed, the axial tension, and the amplitude of external distributed force on the vibration amplitude of axially moving Timoshenko beams.
基金Project supported by the National Natural Science Foundation of China(Nos.11672007 and11672186)the Training Scheme for the Youth Teachers of Higher Education of Shanghai(No.ZZyyy12035)the "Chen Guang" Project(No.14CG57)
文摘Complex modes and traveling waves in axially moving Timoshenko beams are studied. Due to the axially moving velocity, complex modes emerge instead of real value modes. Correspondingly, traveling waves are present for the axially moving material while standing waves dominate in the traditional static structures. The analytical results obtained in this study are verified with a numerical differential quadrature method.
基金National Natural Science Foundations of China(Nos.11202140,10702045 and 11172010)the Project of Liaoning Education Department,China(No.2013ZA54002)Aerospace Engineering Foundation,China(No.L2013073)
文摘An exact solution for supercritical thermal configurations of axially moving Timoshenko beams with arbitrary boundary conditions is presented. The geometric nonlinearity and temperature variation of the traveling beams in supercritical regime is considered. Then, the nonlinear buckling problem is solved. A closed-form solution for the supercritical thermal configuration in terms of the axial speed,stiffness and thermal expansion is obtained.Some typical boundary conditions,such as fixed-fixed and pinnedpinned are discussed. More importantly, based on the exact solution,a new anti-symmetric thermal configuration for the fixedfixed axially moving Timoshenko beams is found.