期刊文献+
共找到44,424篇文章
< 1 2 250 >
每页显示 20 50 100
Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO_(2) into carboxylic acids 被引量:4
1
作者 Xiaofei Zhang Wenhuan Huang +4 位作者 Le Yu Max García-Melchor Dingsheng Wang Linjie Zhi Huabin Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期1-35,共35页
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c... The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs. 展开更多
关键词 carbon neutrality carboxylic acids CO_(2)conversion heterogeneous catalyst in situ technology
下载PDF
Two-photon live imaging of direct glia-to-neuron conversion in the mouse cortex 被引量:1
2
作者 Zongqin Xiang Shu He +13 位作者 Rongjie Chen Shanggong Liu Minhui Liu Liang Xu Jiajun Zheng Zhouquan Jiang Long Ma Ying Sun Yongpeng Qin Yi Chen Wen Li Xiangyu Wang Gong Chen Wenliang Lei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1781-1788,共8页
Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for ... Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction. 展开更多
关键词 astrocyte-to-neuron conversion Ca2+imaging direct lineage conversion GLIA ASTROCYTE in vivo reprogramming lineage-tracing mice NeuroD1 NEURON two-photon imaging
下载PDF
Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid 被引量:1
3
作者 Rui Li Qixuan Lin +3 位作者 Junli Ren Xiaobao Yang Yingxiong Wang Lingzhao Kong 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期311-320,共10页
The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural... The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose. 展开更多
关键词 FRUCTOSE Dealuminated-Hb zeolite Selective conversion FURFURAL
下载PDF
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
4
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
下载PDF
Reversible solid-liquid conversion enabled by self-capture effect for stable non-flow zinc-bromine batteries 被引量:1
5
作者 Xixi Zhang Xiaoke Wang +7 位作者 Guangmeng Qu Tairan Wang Xiliang Zhao Jun Fan Cuiping Han Xijin Xu Chunyi Zhi Hongfei Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1035-1044,共10页
Non-flow aqueous zinc-bromine batteries without auxiliary components(e.g.,pumps,pipes,storage tanks)and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage.Unfort... Non-flow aqueous zinc-bromine batteries without auxiliary components(e.g.,pumps,pipes,storage tanks)and ion-selective membranes represent a cost-effective and promising technology for large-scale energy storage.Unfortunately,they generally suffer from serious diffusion and shuttle of polybromide(Br^(-),Br^(3-))due to the weak physical adsorption between soluble polybromide and host carbon materials,which results in low energy efficiency and poor cycling stability.Here,we develop a novel self-capture organic bromine material(1,10-bis[3-(trimethylammonio)propyl]-4,4'-bipyridinium bromine,NVBr4)to successfully realize reversible solid complexation of bromide components for stable non-flow zinc-bromine battery applications.The quaternary ammonium groups(NV^(4+)ions)can effectively capture the soluble polybromide species based on strong chemical interaction and realize reversible solid complexation confined within the porous electrodes,which transforms the conventional“liquid-liquid”conversion of soluble bromide components into“liquid-solid”model and effectively suppresses the shuttle effect.Thereby,the developed non-flow zinc-bromide battery provides an outstanding voltage platform at 1.7 V with a notable specific capacity of 325 mAh g^(-1)NVBr4(1 A g^(-1)),excellent rate capability(200 mAh g^(-1)NVBr4 at 20 A g^(-1)),outstanding energy density of 469.6 Wh kg^(-1)and super-stable cycle life(20,000 cycles with 100%Coulombic efficiency),which outperforms most of reported zinc-halogen batteries.Further mechanism analysis and DFT calculations demonstrate that the chemical interaction of quaternary ammonium groups and bromide species is the main reason for suppressing the shuttle effect.The developed strategy can be extended to other halogen batteries to obtain stable charge storage. 展开更多
关键词 Solid-liquid conversion Self-capture Non-flow zinc-bromine batteries Quaternary ammonium
下载PDF
Conversion therapy of a giant hepatocellular carcinoma with portal vein thrombus and inferior vena cava thrombus:A case report and review of literature 被引量:1
6
作者 Wen-Jie Song Jian Xu +5 位作者 Ye Nie Wei-Min Li Jian-Ping Li Li Yang Meng-Qi Wei Kai-Shan Tao 《World Journal of Clinical Cases》 SCIE 2024年第16期2847-2855,共9页
BACKGROUND The prognosis of hepatocellular carcinoma(HCC)combined with portal and hepatic vein cancerous thrombosis is poor,for unresectable patients the combination of targeted therapy and immune therapy was the firs... BACKGROUND The prognosis of hepatocellular carcinoma(HCC)combined with portal and hepatic vein cancerous thrombosis is poor,for unresectable patients the combination of targeted therapy and immune therapy was the first-line recommended treatment for advanced HCC,with a median survival time of only about 2.7-6 months.In this case report,we present the case of a patient with portal and hepatic vein cancerous thrombosis who achieved pathologic complete response after conversion therapy.CASE SUMMARY In our center,a patient with giant HCC combined with portal vein tumor thrombus and hepatic vein tumor thrombus was treated with transcatheter arterial chemoembolization(TACE),radiotherapy,targeted therapy and immunotherapy,and was continuously given icaritin soft capsules for oral regulation.After 7 months of conversion therapy,the patient's tumor shrank and the tumor thrombus subsided significantly.The pathology of surgical resection was in complete remission,and there was no progression in the postoperative follow-up for 7 months,which provided a basis for the future strategy of combined conversion therapy.CONCLUSION In this case,atezolizumab,bevacizumab,icaritin soft capsules combined with radiotherapy and TACE had a good effect.For patients with hepatocellular carcinoma combined with hepatic vein/inferior vena cava tumor thrombus,adopting a high-intensity,multimodal proactive strategy under the guidance of multidisciplinary team(MDT)is an important attempt to break through the current treatment dilemma. 展开更多
关键词 Hepatocellular carcinoma ICARITIN conversion DOWNSTAGING Portal vein thrombus Case report
下载PDF
Electronic structure engineering of transition metal dichalcogenides for boosting hydrogen energy conversion electrocatalysts
7
作者 Bing Hao Jingjing Guo +1 位作者 Peizhi Liu Junjie Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期13-28,共16页
Electrocatalytic water splitting for hydrogen production is an appealing strategy to reduce carbon emissions and generate renewable fuels.This promising process,however,is limited by its sluggish reaction kinetics and... Electrocatalytic water splitting for hydrogen production is an appealing strategy to reduce carbon emissions and generate renewable fuels.This promising process,however,is limited by its sluggish reaction kinetics and high-cost catalysts.The two-dimensional(2D)transition metal dichalcogenides(TMDCs)have presented great potential as electrocatalytic materials due to their tunable bandgaps,abundant defective active sites,and good chemical stability.Consequently,phase engineering,defect engineering and interface engineering have been adopted to manipulate the electronic structure of TMDCs for boosting their exceptional catalytic performance.Particularly,it is essential to clarify the local structure of catalytically active sites of TMDCs and their structural evolution in catalytic reactions using atomic resolution electron microscopy and the booming in situ technologies,which is beneficial for exploring the underlying reaction mechanism.In this review,the growth regulation,characterization,particularly atomic configurations of active sites in TMDCs are summarized.The significant role of electron microscopy in the understanding of the growth mechanism,the controlled synthesis and functional optimization of 2D TMDCs are discussed.This review will shed light on the design and synthesis of novel electrocatalysts with high performance,as well as prompt the application of advanced electron microscopy in the research of materials science. 展开更多
关键词 TMDCs STEM hydrogen energy conversion active SITE identification
下载PDF
1.42-fold enhancement of formate selectivity by linker conversion on the Zn-based metal organic framework catalyst
8
作者 Yayu Guan Yuyu Liu +2 位作者 Fanghua Ning Jin Yi Jiujun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期183-190,I0006,共9页
Electro-reduction of carbon dioxide(ERCO_(2)) is considered an effective method to alleviate the greenhouse effect and produce value-added chemicals.Achieving the dominant selectivity of Zn-based catalysts for formate... Electro-reduction of carbon dioxide(ERCO_(2)) is considered an effective method to alleviate the greenhouse effect and produce value-added chemicals.Achieving the dominant selectivity of Zn-based catalysts for formate remains a challenge.In this article,the ZnIn-E_(12) catalyst is successfully prepared by solvent assisted ligand exchange(SALE) method to convert organic ligands,achieving a Faradaic efficiency of 72.28% for formate at-1.26 V vs.RHE(V_(RHE)),which is 1.42 times higher than the original catalyst.Evidence shows that the successful conversion of organic ligands can transform the catalyst from the original large size polyhedron to cross-linked network of particles with a diameter of about 30 nm.The increased specific surface area can expose more active sites and facilitate the electrocatalytic conversion of CO_(2) to formate.This work is expected to provide inspiration for the regulation of formate selectivity and catalyst size in Zn-based catalysts. 展开更多
关键词 ELECTROCATALYST Carbon dioxide FORMATE Linker conversion
下载PDF
Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings
9
作者 谭泽林 张检发 +4 位作者 朱志宏 陈伟 邵铮铮 刘肯 秦石乔 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期398-403,共6页
Compared with well-developed free space polarization converters, polarization conversion between TE and TM modes in the waveguide is generally considered to be caused by shape birefringence, like curvature, morphology... Compared with well-developed free space polarization converters, polarization conversion between TE and TM modes in the waveguide is generally considered to be caused by shape birefringence, like curvature, morphology of waveguide cross section and scattering. Here, we study the polarization conversion mechanism in 1-THz-FSR X-cut lithium niobate microrings with multiple-resonance condition, that is the conversion can be implemented by birefringence of waveguides,which will also introduce an avoided-mode crossing. In the experiment, we find that this mode crossing results in severe suppression of one sideband in local nondegenerate four-wave mixing and disrupts the cascaded four-wave mixing on this side. Simultaneously, we propose one two-dimensional method to simulate the eigenmodes(TE and TM) in X-cut microrings, and the mode crossing point. This work will provide one approach to the design of polarization converters and simulation for monolithic photonics integrated circuits, and may be helpful to the studies of missed temporal dissipative soliton formation in X-cut lithium niobate rings. 展开更多
关键词 polarization conversion BIREFRINGENCE nondegenerate four-wave mixing
下载PDF
Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion
10
作者 Tian Mai Lei Chen +2 位作者 Pei‑Lin Wang Qi Liu Ming‑Guo Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期161-179,共19页
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin... With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments. 展开更多
关键词 Metal-organic frameworks MXene NANOCELLULOSE Electromagnetic shielding Photothermal conversion
下载PDF
Insight into structure evolution of carbon nitrides and its energy conversion as luminescence
11
作者 Hao Zhang Jingwei Zhang +4 位作者 Wenjie Chen Minjia Tao Xianguang Meng Yuanjian Zhang Guifu Zuo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期37-60,共24页
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high l... A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted. 展开更多
关键词 carbon nitride CHEMILUMINESCENCE ELECTROCHEMILUMINESCENCE energy conversion PHOTOLUMINESCENCE structural evolution
下载PDF
Enhancing I^(0)/I^(-)Conversion Efficiency by Starch Confinement in Zinc-lodine Battery
12
作者 Danyang Zhao Qiancheng Zhu +4 位作者 Qiancheng Zhou Wenming Zhang Ying Yu Shuo Chen Zhifeng Ren 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期114-120,共7页
The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle li... The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs. 展开更多
关键词 aqueous battery conversion efficiency iodine-zinc battery starch confinement
下载PDF
Recent advances in core-shell organic framework-based photocatalysts for energy conversion and environmental remediation
13
作者 Qibing Dong Ximing Li +9 位作者 Yanyan Duan Qingyun Tian Xinxin Liang Yiyin Zhu Lin Tian Junjun Wang Atif Sial Yongqian Cui Ke Zhao Chuanyi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期168-199,I0004,共33页
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi... Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation. 展开更多
关键词 Organic framework Core-shell structure PHOTOCATALYSIS Energy conversion Environmental remediation
下载PDF
Light-Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications
14
作者 Jung Hwan Park Srinivas Pattipaka +10 位作者 Geon-Tae Hwang Minok Park Yu Mi Woo Young Bin Kim Han Eol Lee Chang Kyu Jeong Tiandong Zhang Yuho Min Kwi-Il Park Keon Jae Lee Jungho Ryu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期468-514,共47页
This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters... This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters such as light sources,interaction time,and fluence to elucidate their importance in material processing.In addition,this study covers various light-induced photothermal and photochemical processes ranging from melting,crystallization,and ablation to doping and synthesis,which are essential for developing energy materials and devices.Finally,we present extensive energy conversion and storage applications demonstrated by LMI technologies,including energy harvesters,sensors,capacitors,and batteries.Despite the several challenges associated with LMIs,such as complex mechanisms,and high-degrees of freedom,we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations. 展开更多
关键词 LIGHT Light-material interaction NANOMATERIALS Energy conversion and storage devices
下载PDF
Optimizing the power conversion processes in diluted donor/acceptor heterojunctions towards 19.4%efficiency all-polymer solar cells
15
作者 Liang Wang Chen Chen +11 位作者 Zirui Gan Chenhao Liu Chuanhang Guo Weiyi Xia Wei Sun Jingchao Cheng Yuandong Sun Jing Zhou Zexin Chen Dan Liu Wei Li Tao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期345-350,共6页
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure... All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device. 展开更多
关键词 All-polymer solar cells Power conversion efficiency Structural order Charge generation
下载PDF
Advanced Thermochemical Conversion Approaches for Green Hydrogen Production from Crop Residues
16
作者 Omojola Awogbemi Ayotunde Adigun Ojo Samson Adedayo Adeleye 《Journal of Renewable Materials》 EI CAS 2024年第1期1-28,共28页
The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydro... The huge volumes of crop residues generated during the production,processing,and consumption of farm products constitute an ecological nuisance when ineffectively managed.The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues.Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy,mitigating climate change,and ensuring environmental sustainability.However,the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly,requires long residence time,produces low-quality products,and therefore needs to be upgraded.The current review examines the conventional,advanced,and integrated thermochemical conversion technologies for crop residues for green hydrogen production.After a brief overview of the conventional thermochemical techniques,the review delves into the broad narration of advanced thermochemical technologies including catalytic pyrolysis,microwave pyrolysis,co-pyrolysis,hyropyrolysis,and autothermal pyrolysis.The study advocates the deployment of integrated pyrolysis,anaerobic digestion,pyrolysis,and gasification technologies will ensure scalability,decomposition of recalcitrant feedstocks,and generation of high grade green hydrogen.The outlook provides suggestions for future research into cost-saving and sustainable integrated technologies for green hydrogen production towards achieving carbon neutrality and a circular bio-economy. 展开更多
关键词 Crop residues carbon neutrality PYROLYSIS GASIFICATION green hydrogen thermochemical conversion
下载PDF
Options and survival benefits of conversion therapy for unresectable hepatocellular carcinoma
17
作者 Wong Hoi She Tan To Cheung 《World Journal of Gastroenterology》 SCIE CAS 2024年第18期2479-2481,共3页
In the study by Wu et al,patients with unresectable hepatocellular carcinoma were subjected to transarterial chemoembolization(TACE)as a conversion therapy in order to render their tumors suitable for resection.A nomo... In the study by Wu et al,patients with unresectable hepatocellular carcinoma were subjected to transarterial chemoembolization(TACE)as a conversion therapy in order to render their tumors suitable for resection.A nomogram was devised and shown to be effective in predicting the survival of these patients.Generalization of the results,however,is questionable since the study subjects consisted of patients who had resection after TACE while excluding patients with the same disease but not suitable for TACE.Immunotherapy can be considered to be an option for conversion therapy.However,markers for determining responses to a conversion therapy and for guiding the decision between TACE and sequential immunotherapy have been lacking.The question of whether effective conversion therapy can truly enhance overall survival remains unanswered. 展开更多
关键词 conversion therapy IMMUNOTHERAPY Liver resection SURVIVAL Transarterial chemoembolization Unresectable hepatocellular carcinoma
下载PDF
Carbon materials for enhanced photothermal conversion:Preparation and applications on steam generation
18
作者 Jiayi Zhu Liu Huang +10 位作者 Feng Bao Guanli Chen Kangjin Song Zheling Wang Hong Xia Jinping Gao Yibing Song Caizhen Zhu Fushen Lu Tingting Zheng Muwei Ji 《Materials Reports(Energy)》 EI 2024年第2期34-44,共11页
Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was ... Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was proposed to release the shortage of fresh water and then it was considered much more important to prepare photothermal materials on large scales with high performance and low cost.In this review,we summarized the works on carbon-based photothermal materials in the past years,including the preparation as well as their application in steam generation.From these works,we give an outlook on the difficulties and chances of how to design and prepare carbon-based photothermal materials. 展开更多
关键词 Photothermal conversion CARBON COMPOSITES Solar energy Steam generation
下载PDF
A review on electrocatalytic CO_(2) conversion via C-C and C-N coupling
19
作者 Zhuangzhi Zhang Sijun Li +6 位作者 Zheng Zhang Zhou Chen Hua Wang Xianguang Meng Wenquan Cui Xiwei Qi Jiacheng Wang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期167-194,共28页
Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of... Electrochemical C-C and C-N coupling reactions with the conversion of abundant and inexpensive small molecules,such as CO_(2) and nitrogencontaining species,are considered a promising route for increasing the value of CO_(2) reduction products.The development of high-performance catalysts is the key to the both electrocatalytic reactions.In this review,we present a systematic summary of the reaction systems for electrocatalytic CO_(2) reduction,along with the coupling mechanisms of C-C and C-N bonds over outstanding electrocatalytic materials recently developed.The key intermediate species and reaction pathways related to the coupling as well as the catalyst-structure relationship will be also discussed,aiming to provide insights and guidance for designing efficient CO_(2) reduction systems. 展开更多
关键词 C-C coupling C-N coupling CO_(2) conversion ELECTROCATALYSIS urea synthesis
下载PDF
Pathologically successful conversion hepatectomy for advanced giant hepatocellular carcinoma after multidisciplinary therapy:A case report and review of literature
20
作者 Ju-Hang Chu Lu-Yao Huang +6 位作者 Ya-Ru Wang Jun Li Shi-Long Han Hao Xi Wen-Xue Gao Ying-Yu Cui Ming-Ping Qian 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1647-1659,共13页
BACKGROUND Hepatocellular carcinoma(HCC)is one of the leading causes of death due to its complexity,heterogeneity,rapid metastasis and easy recurrence after surgical resection.We demonstrated that combination therapy ... BACKGROUND Hepatocellular carcinoma(HCC)is one of the leading causes of death due to its complexity,heterogeneity,rapid metastasis and easy recurrence after surgical resection.We demonstrated that combination therapy with transcatheter arterial chemoembolization(TACE),hepatic arterial infusion chemotherapy(HAIC),Epclusa,Lenvatinib and Sintilimab is useful for patients with advanced HCC.CASE SUMMARY A 69-year-old man who was infected with hepatitis C virus(HCV)30 years previously was admitted to the hospital with abdominal pain.Enhanced computed tomography(CT)revealed a low-density mass in the right lobe of the liver,with a volume of 12.9 cm×9.4 cm×15 cm,and the mass exhibited a“fast-in/fast-out”pattern,with extensive filling defect areas in the right branch of the portal vein and an alpha-fetoprotein level as high as 657 ng/mL.Therefore,he was judged to have advanced HCC.During treatment,the patient received three months of Epclusa,three TACE treatments,two HAIC treatments,three courses of sintilimab,and twenty-one months of lenvatinib.In the third month of treatment,the patient developed severe side effects and had to stop immunotherapy,and the Lenvatinib dose had to be halved.Postoperative pathological diagnosis indicated a complete response.The patient recovered well after the operation,and no tumor recurrence was found.CONCLUSION Multidisciplinary conversion therapy for advanced enormous HCC caused by HCV infection has a significant effect.Individualized drug adjustments should be made during any treatment according to the patient's tolerance to treatment. 展开更多
关键词 Hepatocellular therapy conversion hepatectomy Interventional therapy Epclusa Lenvatinib Sintilimab Case report
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部