According to the rules of UIC515-3, the service loads of the axles are defined, which include some different loads cases as follows: the static loads; the impact loads resulted from running through the rail joints an...According to the rules of UIC515-3, the service loads of the axles are defined, which include some different loads cases as follows: the static loads; the impact loads resulted from running through the rail joints and unevenness rails; the loads through curves and from braking. Through the calculating and analysis, the stress distribution of the hollow axles is obtained for 200 km/h high speed motor trains used in China. At the same time, the fatigue crack growth of hollow axles is studied, and the initial surface cracks of 2 mm depth caused by hard objects strike or the other causes are discussed. On the basis of the linear elastic fracture mechanics theory, the stress intensity factor of the crack of the geometry transition outside the wheel seat is also studied. Associated with fatigue crack propagation equation and the corresponding crack propagation threshold, the crack propagation characteristics under different shapes are calculated. Then the running distances are educed with different shapes propagating to the critical length, and the estimation of the residual lives about hollow axles which are the reference values of examine and repair limit of the hollow axle is given.展开更多
This study investigated the fretting wear and fatigue of full-scale railway axles.Fatigue tests were conducted on full-scale railway axles,and the fretting wear and fretting fatigue in the fretted zone of the railway ...This study investigated the fretting wear and fatigue of full-scale railway axles.Fatigue tests were conducted on full-scale railway axles,and the fretting wear and fretting fatigue in the fretted zone of the railway axles were analysed.Three-dimensional finite element models were established based on the experimental results.Then,multi-axial fatigue parameters and a linear elastic fracture mechanics-based approach were used to investigate the fretting fatigue crack initiation and propagation,respectively,in which the role of the fretting wear was taken into account.The experimental and simulated results showed that the fretted zone could be divided into zones I-III according to the surface damage morphologies.Fretting wear alleviated the stress concentration near the wheel seat edge and resulted in a new stress concentration near the worn/unworn boundary in zone II,which greatly promoted the fretting crack initiation at the inner side of the fretted zone.Meanwhile,the stress concentration also increased the equivalent stress intensity factor range DKeq below the mating surface,and thus promoted the propagation of fretting fatigue crack.Based on these findings,the effect of the stress redistribution resulting from fretting wear is suggested to be taken into account when evaluating the fretting fatigue in railway axles.展开更多
Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can...Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can initiate from the notch and propagate to failure. It is noted that the stress intensity factor is the control parameter of the crack propagating, for the purpose of getting the more exact propagation characteristics, the stress intensity factor is studied mainly. The service loads of hollow axles are defined, and the stress distribution of hollow axles is obtained according to the load spectrum. The semi-ellipse crack configuration is defined with three parameters: the aspect ratio, the relative depth and the relative location along the crack front. Quarter point 20-node isoparametric degenerate singular elements are used for the region near the crack tip. The finite element model of crack extension of hollow axle is created, and the crack front is dispersed which can realize orthogonal extension. Based on this the stress intensity factors of crack front were calculated, and the distribution rules of the stress intensity factors of different initial crack shapes are obtained. The conclusions are compared with that of the analytic method and they agree with each other very well, and the calculating results show that there is a close relationship between the stress intensity factor and the initial crack shape. For a round crack the stress intensity factor at the surface point increases faster than the one at the center point with the crock propagation. However, for a narrow crack, the results are in contrast with that of a round one. So, all the cracks with different shapes propagate toward to a similar shape, and they grow at this shape to end. The study may contribute to the crack propagate characteristics research.展开更多
Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the...Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.展开更多
Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-e...Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction.However,the mechanisms involved remain unclear.In this study,we found that after spinal cord injury,resting microglia(M0)were polarized into pro-inflammatory phenotypes(MG1 and MG3),while resting astrocytes were polarized into reactive and scar-forming phenotypes.The expression of growth arrest-specific 6(Gas6)and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury.In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia,and even inhibited the cross-regulation between them.We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway.This,in turn,inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways.In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord,thereby promoting tissue repair and motor function recovery.Overall,Gas6 may play a role in the treatment of spinal cord injury.It can inhibit the inflammatory pathway of microglia and polarization of astrocytes,attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment,and thereby alleviate local inflammation and reduce scar formation in the spinal cord.展开更多
Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the probl...Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.展开更多
The microstructure,precipitates and properties of 25CrNiMoV(DZ2)steel for high-speed railway axles with different Nb contents were investigated by means of optical microscopy,scanning electron microscopy,electron back...The microstructure,precipitates and properties of 25CrNiMoV(DZ2)steel for high-speed railway axles with different Nb contents were investigated by means of optical microscopy,scanning electron microscopy,electron back-scattering diffraction,transmission electron microscopy and physicochemical phase analysis.The results show that the grain size of the original austenite of the test steels decreases from 20.5 to 14.2 and 10.8μm after adding 0.026 and 0.039 wt.%Nb to a 25CrNiMoV steel,respectively.Moreover,the block width of the tempered martensite in the test steels is refined from 1.91 to 1.72 and 1.60µm,respectively.MC-type precipitates in 25CrNiMoV steel are mainly VC,while(Nb,V)C gradually precipitates when Nb is microalloyed,and the amount of precipitates increases with increasing Nb content.Through strengthening mechanism analysis,it is found that grain refinement strengthening is the primary way to increase the strength.The improvement in the yield strength with increasing Nb content is attributed to a significant increase in precipitation strengthening,grain refinement strengthening and dislocation strengthening.展开更多
As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the di...As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles.展开更多
AIM:To determine the agreement of ocular biometric indices including axial length,keratometric readings,anterior chamber depth,and horizontal corneal diameter between the Pentacam AXL and IOL Master 500.METHODS:The st...AIM:To determine the agreement of ocular biometric indices including axial length,keratometric readings,anterior chamber depth,and horizontal corneal diameter between the Pentacam AXL and IOL Master 500.METHODS:The study was a large cross-sectional population-based study(Tehran Geriatric Eye Study)conducted from Jan 2019 to Jan 2020.A total of 160 clusters were randomly selected proportional to size(each cluster contained 20 individuals)from 22 strata of Tehran city.All people aged 60y and above were invited to participate in the study.For all participants,preliminary ocular examinations were performed including the measurement of uncorrected and best-corrected visual acuity,objective and subjective refraction,anterior and posterior segment examinations.All participants underwent an ocular biometry using the Pentacam AXL and IOL Master 500.RESULTS:The 95%limits of agreement(LoA)between the two devices were-0.13 to 0.19,-0.15 to 0.17,and-0.13 to 0.19 in normal,pseudophakic,and cataractous eyes,respectively.With increasing the axial length,the difference between the two devices significantly increased in all three groups of normal,pseudophakic,and cataractous eyes(P<0.001).The 95% LoAs between the two devices regarding the mean keratometry shows that the best LoAs were seen in cataractous(-0.33 to 0.81)and followed by normal eyes(-0.36 to 0.86)and the pseudophakic eyes(-0.48 to 0.90)had the widest LoA.The 95% LoAs for horizontal corneal diameter measurements were-0.08 to 0.86,-0.03 to 0.83,and-0.07 to 0.87 in normal,pseudophakic,and cataractous eyes,respectively.The 95% LoAs of anterior chamber depth measurements between the two devices was-0.39 to 0.19 and-0.37 to 0.13 in normal eyes and cataractous,respectively.CONCLUSION:The Pentacam AXL has excellent agreement with the gold standard,IOL Master 500 in measuring axial length.In eyes with cataracts,the difference between the two devices is more scattered.With the increasing of axial length,the difference between the two devices increased,which should be considered when using Pentacam AXL.展开更多
基金National Basic Research and Development Program of China(973 Program,No.2007CB714705).
文摘According to the rules of UIC515-3, the service loads of the axles are defined, which include some different loads cases as follows: the static loads; the impact loads resulted from running through the rail joints and unevenness rails; the loads through curves and from braking. Through the calculating and analysis, the stress distribution of the hollow axles is obtained for 200 km/h high speed motor trains used in China. At the same time, the fatigue crack growth of hollow axles is studied, and the initial surface cracks of 2 mm depth caused by hard objects strike or the other causes are discussed. On the basis of the linear elastic fracture mechanics theory, the stress intensity factor of the crack of the geometry transition outside the wheel seat is also studied. Associated with fatigue crack propagation equation and the corresponding crack propagation threshold, the crack propagation characteristics under different shapes are calculated. Then the running distances are educed with different shapes propagating to the critical length, and the estimation of the residual lives about hollow axles which are the reference values of examine and repair limit of the hollow axle is given.
基金the Independent Research Project of the State Key Laboratory of Traction Power(No.2018TPL_Z01)the National Natural Science Foundation of China(No.51375406)the Fundamental Research Funds for the Central Universities(No.2682018CX68).
文摘This study investigated the fretting wear and fatigue of full-scale railway axles.Fatigue tests were conducted on full-scale railway axles,and the fretting wear and fretting fatigue in the fretted zone of the railway axles were analysed.Three-dimensional finite element models were established based on the experimental results.Then,multi-axial fatigue parameters and a linear elastic fracture mechanics-based approach were used to investigate the fretting fatigue crack initiation and propagation,respectively,in which the role of the fretting wear was taken into account.The experimental and simulated results showed that the fretted zone could be divided into zones I-III according to the surface damage morphologies.Fretting wear alleviated the stress concentration near the wheel seat edge and resulted in a new stress concentration near the worn/unworn boundary in zone II,which greatly promoted the fretting crack initiation at the inner side of the fretted zone.Meanwhile,the stress concentration also increased the equivalent stress intensity factor range DKeq below the mating surface,and thus promoted the propagation of fretting fatigue crack.Based on these findings,the effect of the stress redistribution resulting from fretting wear is suggested to be taken into account when evaluating the fretting fatigue in railway axles.
基金supported by National Basic Research and Development Program of China (973 Program, Grant No. 2007CB714705)
文摘Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can initiate from the notch and propagate to failure. It is noted that the stress intensity factor is the control parameter of the crack propagating, for the purpose of getting the more exact propagation characteristics, the stress intensity factor is studied mainly. The service loads of hollow axles are defined, and the stress distribution of hollow axles is obtained according to the load spectrum. The semi-ellipse crack configuration is defined with three parameters: the aspect ratio, the relative depth and the relative location along the crack front. Quarter point 20-node isoparametric degenerate singular elements are used for the region near the crack tip. The finite element model of crack extension of hollow axle is created, and the crack front is dispersed which can realize orthogonal extension. Based on this the stress intensity factors of crack front were calculated, and the distribution rules of the stress intensity factors of different initial crack shapes are obtained. The conclusions are compared with that of the analytic method and they agree with each other very well, and the calculating results show that there is a close relationship between the stress intensity factor and the initial crack shape. For a round crack the stress intensity factor at the surface point increases faster than the one at the center point with the crock propagation. However, for a narrow crack, the results are in contrast with that of a round one. So, all the cracks with different shapes propagate toward to a similar shape, and they grow at this shape to end. The study may contribute to the crack propagate characteristics research.
基金the National Natural Science Foundation of China(Nos.52001310 and 52130002)the National Science and Technology Major Project(No.J2019-VI-0019-0134)+1 种基金KC Wong Education Foundation(No.GJTD-2020-09)Institute of Metal Res earch Innovation Fund(No.2023-ZD01)。
文摘Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.
基金supported by the National Natural Science Foundation of China, Nos.81971151 (to YW), 82102528 (to XL), 82102583 (to LW)the Natural Science Foundation of Guangdong Province, China, Nos.2020A1515010265 (to YW), 2020A1515110679 (to XL), and 2021A1515010358 (to XL)
文摘Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction.However,the mechanisms involved remain unclear.In this study,we found that after spinal cord injury,resting microglia(M0)were polarized into pro-inflammatory phenotypes(MG1 and MG3),while resting astrocytes were polarized into reactive and scar-forming phenotypes.The expression of growth arrest-specific 6(Gas6)and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury.In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia,and even inhibited the cross-regulation between them.We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway.This,in turn,inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways.In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord,thereby promoting tissue repair and motor function recovery.Overall,Gas6 may play a role in the treatment of spinal cord injury.It can inhibit the inflammatory pathway of microglia and polarization of astrocytes,attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment,and thereby alleviate local inflammation and reduce scar formation in the spinal cord.
基金supported by the National Natural Science Foundation of China(Grant Nos.62173137,52172403,62303178).
文摘Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.
基金supported by National Key R&D Program of China(No.2017YFB0304600).
文摘The microstructure,precipitates and properties of 25CrNiMoV(DZ2)steel for high-speed railway axles with different Nb contents were investigated by means of optical microscopy,scanning electron microscopy,electron back-scattering diffraction,transmission electron microscopy and physicochemical phase analysis.The results show that the grain size of the original austenite of the test steels decreases from 20.5 to 14.2 and 10.8μm after adding 0.026 and 0.039 wt.%Nb to a 25CrNiMoV steel,respectively.Moreover,the block width of the tempered martensite in the test steels is refined from 1.91 to 1.72 and 1.60µm,respectively.MC-type precipitates in 25CrNiMoV steel are mainly VC,while(Nb,V)C gradually precipitates when Nb is microalloyed,and the amount of precipitates increases with increasing Nb content.Through strengthening mechanism analysis,it is found that grain refinement strengthening is the primary way to increase the strength.The improvement in the yield strength with increasing Nb content is attributed to a significant increase in precipitation strengthening,grain refinement strengthening and dislocation strengthening.
基金supported by the National Natural Science Foundation of China(52075032)the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd.(K2022J023).
文摘As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles.
基金Supported by the Deputy of Research and Technology of Tehran University of Medical Sciences as a PhD Thesis.
文摘AIM:To determine the agreement of ocular biometric indices including axial length,keratometric readings,anterior chamber depth,and horizontal corneal diameter between the Pentacam AXL and IOL Master 500.METHODS:The study was a large cross-sectional population-based study(Tehran Geriatric Eye Study)conducted from Jan 2019 to Jan 2020.A total of 160 clusters were randomly selected proportional to size(each cluster contained 20 individuals)from 22 strata of Tehran city.All people aged 60y and above were invited to participate in the study.For all participants,preliminary ocular examinations were performed including the measurement of uncorrected and best-corrected visual acuity,objective and subjective refraction,anterior and posterior segment examinations.All participants underwent an ocular biometry using the Pentacam AXL and IOL Master 500.RESULTS:The 95%limits of agreement(LoA)between the two devices were-0.13 to 0.19,-0.15 to 0.17,and-0.13 to 0.19 in normal,pseudophakic,and cataractous eyes,respectively.With increasing the axial length,the difference between the two devices significantly increased in all three groups of normal,pseudophakic,and cataractous eyes(P<0.001).The 95% LoAs between the two devices regarding the mean keratometry shows that the best LoAs were seen in cataractous(-0.33 to 0.81)and followed by normal eyes(-0.36 to 0.86)and the pseudophakic eyes(-0.48 to 0.90)had the widest LoA.The 95% LoAs for horizontal corneal diameter measurements were-0.08 to 0.86,-0.03 to 0.83,and-0.07 to 0.87 in normal,pseudophakic,and cataractous eyes,respectively.The 95% LoAs of anterior chamber depth measurements between the two devices was-0.39 to 0.19 and-0.37 to 0.13 in normal eyes and cataractous,respectively.CONCLUSION:The Pentacam AXL has excellent agreement with the gold standard,IOL Master 500 in measuring axial length.In eyes with cataracts,the difference between the two devices is more scattered.With the increasing of axial length,the difference between the two devices increased,which should be considered when using Pentacam AXL.