Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles an...Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.展开更多
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ...Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.展开更多
Objective and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Result...Objective and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Results Normal animals showed numerous fine dots of synaptophysin immunoreactivity in the gray matter. An increase in synaptophysin immunoreactivity was observed in the neuropil and synapses at the surface of motor neurons of the anterior horns in the ThS-9 segments lost immunoreactivity at 4-hour point after trauma. The immunoreactive synapses reappeared around motor neurons at 9-day point. Unexpected accumulation of synaptophysin immunoreactivity occurred in injured axons of the white matter of the compressed spinal cord. Conclusion Synaptic changes were important components of secondary injuries in spinal cord trauma. Loss of synapses on motor neurons may be one of the factors causing motor dysfunction of hind limbs and formation of new synapses may play an import,ant role in recovery of motor function. Synaptophysin immunohistochemistry is also a good tool for studies of axonal swellings in spinal cord injuries.展开更多
Because the adult mammalian central nervous system (CNS) has only limited intrinsic capacity to regenerate connections after injury, due to factors both intrinsic and extrinsic to the mature neuron (Shen et al., 19...Because the adult mammalian central nervous system (CNS) has only limited intrinsic capacity to regenerate connections after injury, due to factors both intrinsic and extrinsic to the mature neuron (Shen et al., 1999; Berry et al., 2008; Lingor et al., 2008; Sun and He, 2010; Moore et al., 2011 ), therapies are required to support the survival of injured neu-rons and to promote the long-distance regrowth of axons back to their original target structures. The retina and optic nerve (ON) are part of the CNS and this system is much used in experiments designed to test new ways of promoting regeneration after injury (Harvey et al., 2006; Benowitz and Yin, 2008; Berry et al., 2008; Fischer and Leibinger, 2012). Testing of therapies designed to improve retinal ganglion cell (RGC) viability also has direct clinical relevance because there is loss of these centrally projecting neurons in many ophthalmic diseases.展开更多
Axonal injury is a pathological hallmark of both head injury and inflammatory-mediated neurological disorders,including multiple sclerosis(Schirmer et al.,2013).Such axonal disruptions and/or disconnections typicall...Axonal injury is a pathological hallmark of both head injury and inflammatory-mediated neurological disorders,including multiple sclerosis(Schirmer et al.,2013).Such axonal disruptions and/or disconnections typically result in proximal axonal segments that remain in continuity with the neuronal somawhile losing contact with their distal targets.展开更多
Macroautophagy (here autophagy) is a catabolic mechanism responsible for the degradation of bulk cytoplasm, long-lived proteins and organeUes. During autophagy, the cargos are engulfed by double-membrane structures ...Macroautophagy (here autophagy) is a catabolic mechanism responsible for the degradation of bulk cytoplasm, long-lived proteins and organeUes. During autophagy, the cargos are engulfed by double-membrane structures named phagophores, which expand to form the autophagosomes. Subsequently, these autophagosomes fuse with lysosomes, in which the cytoplasmic cargos are degraded. Autophagy is a constitutive pro- cess, which plays an important role in cellular homeostasis. In primary neurons autophagosome formation occurs continuously and preferentially at the distal end of axons. On the other hand, autophagy is increased by different stresses, and its dysregulation or excessive induction may lead to detrimental effects. Many neurological disorders have been associated with alterations in the autophagic pathway and an increase in autophagy during axonal degeneration was described.展开更多
c-Jun NH2-terminal kinase(JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B(Trk B) anterograde axonal transport. It remains unclear whether JNK-in...c-Jun NH2-terminal kinase(JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B(Trk B) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of Trk B anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed Trk B complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of Trk B gradually increased in axon terminals. However, the distribution of Trk B reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of Trk B after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of Trk B in dendrites. These findings confirm that JNK-interacting protein 1 can interact with Trk B in neuronal cells, and can regulate the transport of Trk B in axons, but not in dendrites.展开更多
OBJECTIVE To study the protective effect of potassium 2-(l-hydroxypentyl)-benzoate(PHPB) on hippocampal neurons,synapses and dystrophic axons in APP/PS1 mice.METHODS Ten-month-old male APP/PS1 transgenic mice and age-...OBJECTIVE To study the protective effect of potassium 2-(l-hydroxypentyl)-benzoate(PHPB) on hippocampal neurons,synapses and dystrophic axons in APP/PS1 mice.METHODS Ten-month-old male APP/PS1 transgenic mice and age-matched wild-type mice were randomly divided into three groups:wild-type group(WT Con group,n=10),APP/PS1 group(Tg Con group,n=10) and PHPB treated APP/PS1 group(PHPB group,n=10).PHPB group received 30 mg · kg-1 PHPB by oral gavage once daily for 3 months.WT Con group and Tg Con group received the same volume of water.Three months later,mice were sacrificed for biochemical and pathological testing such as transmission electron microscopy,Golgi staining and Western boltting analysis.RESULTS Under the transmission electron microscope,most hippocampal neurons and subcel ular organel es in WT Con group exhibited normal morphology.However,the degenerative changes were observed in Tg Con group such as nuclear fragmentation,mitochondrial swelling,ribosomes detachment and autophagic vacuoles accumulation.The hippocampal synapses number and the thickness of postsynaptic density(PSD) were significantly decreased in Tg Con group compared with the WT Con group(P<0.05).After PHPB treatment,the degenerative changes in APP/PS1 mice were alleviated to some extent.The synapse number has been elevated significantly(P<0.05) and the PSD has been thickened as well.Golgi staining showed that the spine density of secondary and tertiary apical dendritic branches was significantly decreased in CA1 and DG areas of Tg Con group(P<0.05).Sholl analysis revealed a decrease of dendritic complexity in Tg Con group compared with WT Con group(P<0.05).These abnormalities were alleviated to some extent after PHPB treatment.Western blotting study showed that the protein levels of synaptic marker PSD-95 and synaptophysin were significantly decreased in the hippocampus of Tg Con group(P<0.05).A significant increase of PSD-95(P<0.05) and a slight increase of SYP were observed after the PHPB treatment.Besides,we found a significant increase in the ratio of LC3-Ⅱ/LC3-Ⅰ in Tg Con group compared with the WT Con group(P<0.01) and the relevant improvement after PHPB treatment(P<0.05),which showed the regulatory effect of PHPB on autophagy impairment.CONCLUSION PHPB showed protective effects on hippocampal neurons,synapses and dystrophic axons in APP/PS1 mice,which might help explain its role on cognitive improvement in Alzheimer disease treatment.展开更多
Myelinated axons of the peripheral and central nervous system(PNS&CNS)are divided into molecularly distinct excitable domains,including the axon initial segment(AIS)and nodes of Ranvier.The AIS is composed of a d...Myelinated axons of the peripheral and central nervous system(PNS&CNS)are divided into molecularly distinct excitable domains,including the axon initial segment(AIS)and nodes of Ranvier.The AIS is composed of a dense network of cytoskeletal proteins,cell adhesion molecules,and voltage gated ion channels and is located at the proximal most region of the axon(Koleand Stuart, 2012).展开更多
Action-potential encoded optical second harmonic generation(SHG)has been recently proposedfor use in det ecting the axonal damage in patients with demnyelinat ing diseases.In this study,thecharact erization of signal ...Action-potential encoded optical second harmonic generation(SHG)has been recently proposedfor use in det ecting the axonal damage in patients with demnyelinat ing diseases.In this study,thecharact erization of signal conduction along axons of two different levels of denyelination wasstudied via a modified Hodgkin Huxley model,because some types of demyelinating disease,i.e.primary progressive and secondary progesive multiple scleross,are dificult to be distinguishedby magnetic resonance imaging(MRI),we focused on the diferences in signal conduction between two diferent demyelinated axons,such as the first-level demyelination and the second.level demyelination.The spatio-temporal distribution of action potentials along denyelinatedaxons and conduction properties including the refractory period and frequency encoding in theset wo patterns were investigated.The results showed that denyelination could induce the decreaseboth in the amplitude of action potentials and the ability of frequency coding,Furthermore,t hesignal conduction velocity in the second-level dernyelination was about 21%slower than that inthe first-level demyelination.The refractory period in the second-level demyelination was about32%longer t han the first-level.Thus,detecting the signal conduction in demnyelinat ed axons byaction-potential encoded optical SHG could greatly improve the assessment of demyelinatingdisorders to classify the patients.This technique also offers a potential fast and noninvasiveoptical approach for monitoring membrane potential.展开更多
The nature of saltatory conduction in myelinated axon described by equivalent circuit and circuit theory is still contentious. Recent experimental observations of action potentials transmitting through disjointed nerv...The nature of saltatory conduction in myelinated axon described by equivalent circuit and circuit theory is still contentious. Recent experimental observations of action potentials transmitting through disjointed nerve fibers strongly suggest an electromagnetic wave propagation mechanism of the nerve signals. In this paper, we employ the electromagnetic wave model of the myelinated axon to describe action potential signal propagation. We use the experimental frequency-dependent conductivity and permittivity values of the nerve tissues in order to reliably calculate the electromagnetic modes by using electromagnetic mode solvers. We find that the electromagnetic waves above 10 kHz can be well confined in extracellular fluid–myelin sheath–intracellular fluid waveguide and propagate a distance of 7 mm without much attenuation. Our study may serve as one of the fundamental researches for the better understanding of the nervous system.展开更多
During development and regeneration,axonal growth depends on a rapid response to extracellular growth and guidance molecules.One mechanism underlying this rapid response is local protein synthesis(Jung et al.,2012)....During development and regeneration,axonal growth depends on a rapid response to extracellular growth and guidance molecules.One mechanism underlying this rapid response is local protein synthesis(Jung et al.,2012).Local protein synthesis is a highly tuned,展开更多
Introduction: Parkinson's disease (PD) is a chronic, age-re- lated neurodegenerative disorder that affects 1-2% of the population over the age of 65. PD is characterised by the progressive degeneration of nigrostr...Introduction: Parkinson's disease (PD) is a chronic, age-re- lated neurodegenerative disorder that affects 1-2% of the population over the age of 65. PD is characterised by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. This leads to disabling motor symptoms, due to the striatal DA denervation. Despite decades of research, there is still no therapy that can slow, stop or regenerate the dying midbrain DA neurons in PD.展开更多
Human central nerve system(CNS)is an extremely complex and delicate structure.While regeneration is possible in some reptiles and fish CNS,the regeneration capacity seems completely lost in adult mammals.Therefore,the...Human central nerve system(CNS)is an extremely complex and delicate structure.While regeneration is possible in some reptiles and fish CNS,the regeneration capacity seems completely lost in adult mammals.Therefore,the classic concept is that once neurons in mammal展开更多
The developing olfactory system - merging of the periph- eral and central nervous systems: The olfactory system is responsible for the sense of smell and is comprised of a complex topographic map that regenerates thr...The developing olfactory system - merging of the periph- eral and central nervous systems: The olfactory system is responsible for the sense of smell and is comprised of a complex topographic map that regenerates throughout life. In rodents each olfactory sensory neuron expresses one of N 1,300 odorant receptors with the neurons being distributed mosaically within the epithelium. The axons of the sensory neurons do not maintain near-neighbour relationships and instead project to disparate topographic targets in the olfac- tory bulb within the central nervous system. The develop- ment of the targets relies on the intermingling of the sensory axons with the interneurons, glia and second order neurons of the olfactory bulb. Thus the formation of the olfactory system involves the coordinated integration of the axons of the peripheral olfactory sensory neurons with the cells of the olfactory bulb.展开更多
The contactin-associated protein (Caspr) family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family- CNTNA...The contactin-associated protein (Caspr) family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family- CNTNAP1 (Casprl), CNTNAP2 (Caspr2), CNTNAP3 (Caspr3), CNTNAP4 (Caspr4) and CNTNAP5 (Caspr5), Casprl-5 is not only involved in the formation of myelinated axons, but also participates in maintaining the stability of adjacent connections. Casprl participates in the formation, differentiation, and proliferation of neurons and astrocytes, and in motor control and cognitive function. We also analyzed the relationship between the Caspr family and neurodegenerative diseases, multiple sclerosis, and autoimmune encephalitis. However, the effects of Caspr on disease course and prognosis remain poorly understood. The effects of Caspr on disease diagnosis and treatment need further investigation.展开更多
Previous investigations of retrograde survival signaling by nerve growth factor (NGF) and other neurotrophins have supported diverse mechanisms, but all proposed mechanisms have in common the generation of survival ...Previous investigations of retrograde survival signaling by nerve growth factor (NGF) and other neurotrophins have supported diverse mechanisms, but all proposed mechanisms have in common the generation of survival signals retrogradely transmitted to the neuronal cell bodies. We report the finding of a retrograde apoptotic signal in axons that is suppressed by local NGF signaling. NGF withdrawal from distal axons alone was sufficient to activate the pro-apoptotic transcription factor, c-jun, in the cell bodies. Providing NGF directly to cell bodies, thereby restoring a source of NGF-induced survival signals, could not prevent c-jun activation caused by NGF withdrawal from the distal axons. This is evidence that c-jun is not activated due to loss of survival signals at the cell bodies. Moreover, blocking axonal transport with colchicine inhibited c-jun activation caused by NGF deprivation suggesting that a retrogradely transported pro-apoptotic signal, rather than loss of a retrogradely transported survival signal, caused c-jun activation. Additional experiments showed that activation of c-jun, pro-caspase-3 cleavage, and apoptosis were blocked by the protein kinase C inhibitors, rottlerin and chelerythrine, only when applied to distal axons suggesting that they block the axon-specific pro-apoptotic signal. The rottlerin-sensitive mechanism was found to regulate glyco- gen synthase kinase 3 (GSK3) activity. The effect of siRNA knockdown, and pharmacological inhibition of GSK3 suggests that GSK3 is required for apoptosis caused by NGF deprivation and may function as a retrograde carrier of the axon apoptotic signal. The existence of a retrograde death signaling system in axons that is suppressed by neurotro- phins has broad implications for neurodevelopment and for discovering treatments for neurodegenerative diseases and neurotrauma.展开更多
A mathematical model has been formulated in accordance with cell chemotaxis and relevant experimental data. A three-dimensional lattice Boltzmann method was used for numerical simulation. The present study observed th...A mathematical model has been formulated in accordance with cell chemotaxis and relevant experimental data. A three-dimensional lattice Boltzmann method was used for numerical simulation. The present study observed the effects of glial scar size and inhibitor concentration on regenerative axonal growth following spinal cord transection. The simulation test comprised two parts: (1) when release rates of growth inhibitor and promoter were constant, the effects of glial scar size on axonal growth rate were analyzed, and concentrations of inhibitor and promoters located at the moving growth cones were recorded. (2) When the glial scar size was constant, the effects of inhibitor and promoter release rates on axonal growth rate were analyzed, and inhibitor and promoter concentrations at the moving growth cones were recorded. Results demonstrated that (1) a larger glial scar and a higher release rate of inhibitor resulted in a reduced axonal growth rate. (2) The axonal growth rate depended on the ratio of inhibitor to promoter concentrations at the growth cones. When the average ratio was 〈 1.5, regenerating axons were able to grow and successfully contact target cells.展开更多
Microtubules have been identified as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concern...Microtubules have been identified as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited benefits for regeneration, while at the same time may be detrimental to the normal work that microtubules perform for the axon. Kinesin-5 (also called kifl I or EgS), a molecular motor protein best known for its crucial role in mitosis, acts as a brake on microtubule movements by other motor proteins in the axon. Drugs that inhibit kinesin-5, originally developed to treat cancer, result in greater mobility of microtubules in the axon and an overall shift in the forces on the microtubule array. As a result, the axon grows faster, retracts less, and more readily enters environments that are inhibitory to axonal regeneration. Thus, drugs that inhibit kinesin-5 offer a novel microtubule-based means to boost axonal regeneration without the concerns that accompany abnormal stabilization of the microtubule array. Even so, inhibiting kinesin-5 is not without its own caveats, such as potential problems with navigation of the regenerating axon to its target, as well as morphological effects on dendrites that could affect learning and memory if the drugs reach the brain.展开更多
基金supported by the Research Funds of the Center for Advanced Interdisciplinary Science and Biomedicine of IHM,No.QYZD20220002the National Natural Science Foundation of China,No.82071357a grant from the Ministry of Science and Technology of China,No.2019YFA0405600 (all to BH)。
文摘Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.
基金supported by the National Natural Science Foundation of China,No.32371048(to YK)the Peking University People’s Hospital Research and Development Funds,No.RDX2021-01(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)。
文摘Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.
基金This study was approved by the Uppsala Ethical Committee for Animal Research. It was supported by grants from the Swedish Association of Neurologically Disabled the Swedish Society for Medical Research (project no.950006) and the National Natural Scien
文摘Objective and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Results Normal animals showed numerous fine dots of synaptophysin immunoreactivity in the gray matter. An increase in synaptophysin immunoreactivity was observed in the neuropil and synapses at the surface of motor neurons of the anterior horns in the ThS-9 segments lost immunoreactivity at 4-hour point after trauma. The immunoreactive synapses reappeared around motor neurons at 9-day point. Unexpected accumulation of synaptophysin immunoreactivity occurred in injured axons of the white matter of the compressed spinal cord. Conclusion Synaptic changes were important components of secondary injuries in spinal cord trauma. Loss of synapses on motor neurons may be one of the factors causing motor dysfunction of hind limbs and formation of new synapses may play an import,ant role in recovery of motor function. Synaptophysin immunohistochemistry is also a good tool for studies of axonal swellings in spinal cord injuries.
文摘Because the adult mammalian central nervous system (CNS) has only limited intrinsic capacity to regenerate connections after injury, due to factors both intrinsic and extrinsic to the mature neuron (Shen et al., 1999; Berry et al., 2008; Lingor et al., 2008; Sun and He, 2010; Moore et al., 2011 ), therapies are required to support the survival of injured neu-rons and to promote the long-distance regrowth of axons back to their original target structures. The retina and optic nerve (ON) are part of the CNS and this system is much used in experiments designed to test new ways of promoting regeneration after injury (Harvey et al., 2006; Benowitz and Yin, 2008; Berry et al., 2008; Fischer and Leibinger, 2012). Testing of therapies designed to improve retinal ganglion cell (RGC) viability also has direct clinical relevance because there is loss of these centrally projecting neurons in many ophthalmic diseases.
基金the center of the current manuscript was performed as a component of the Operation Brain Trauma Therapy consortium,which is supported by U.S.Army grants W81XWH-10-1-0623 and WH81XWH-14-2-0018Microscopy was performed at the VCU Department of Anatomy and Neurobiology Microscopy Facility,supported,in part,with funding from NIH-NINDS Center core grant 5P30NS047463
文摘Axonal injury is a pathological hallmark of both head injury and inflammatory-mediated neurological disorders,including multiple sclerosis(Schirmer et al.,2013).Such axonal disruptions and/or disconnections typically result in proximal axonal segments that remain in continuity with the neuronal somawhile losing contact with their distal targets.
基金the National Council for Scientific and Technological Development(CNPq)the International Foundation for Research in Paraplegia(IRP-P 112)+1 种基金the Deutsche Forschungsgemeinschaft(DFG-LI 1308/3-1)the Else Kr?ner-Fresenius-Stiftung
文摘Macroautophagy (here autophagy) is a catabolic mechanism responsible for the degradation of bulk cytoplasm, long-lived proteins and organeUes. During autophagy, the cargos are engulfed by double-membrane structures named phagophores, which expand to form the autophagosomes. Subsequently, these autophagosomes fuse with lysosomes, in which the cytoplasmic cargos are degraded. Autophagy is a constitutive pro- cess, which plays an important role in cellular homeostasis. In primary neurons autophagosome formation occurs continuously and preferentially at the distal end of axons. On the other hand, autophagy is increased by different stresses, and its dysregulation or excessive induction may lead to detrimental effects. Many neurological disorders have been associated with alterations in the autophagic pathway and an increase in autophagy during axonal degeneration was described.
基金supported by the Henan Province Education Department Key Project of Science and Technology Research in China,No.12A350006
文摘c-Jun NH2-terminal kinase(JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B(Trk B) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of Trk B anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed Trk B complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of Trk B gradually increased in axon terminals. However, the distribution of Trk B reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of Trk B after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of Trk B in dendrites. These findings confirm that JNK-interacting protein 1 can interact with Trk B in neuronal cells, and can regulate the transport of Trk B in axons, but not in dendrites.
基金National Natural Sciences Foundation of China(8147320081673420)CAMS InnovationFund for Medical Sciences (2017-I2M-2-004).
文摘OBJECTIVE To study the protective effect of potassium 2-(l-hydroxypentyl)-benzoate(PHPB) on hippocampal neurons,synapses and dystrophic axons in APP/PS1 mice.METHODS Ten-month-old male APP/PS1 transgenic mice and age-matched wild-type mice were randomly divided into three groups:wild-type group(WT Con group,n=10),APP/PS1 group(Tg Con group,n=10) and PHPB treated APP/PS1 group(PHPB group,n=10).PHPB group received 30 mg · kg-1 PHPB by oral gavage once daily for 3 months.WT Con group and Tg Con group received the same volume of water.Three months later,mice were sacrificed for biochemical and pathological testing such as transmission electron microscopy,Golgi staining and Western boltting analysis.RESULTS Under the transmission electron microscope,most hippocampal neurons and subcel ular organel es in WT Con group exhibited normal morphology.However,the degenerative changes were observed in Tg Con group such as nuclear fragmentation,mitochondrial swelling,ribosomes detachment and autophagic vacuoles accumulation.The hippocampal synapses number and the thickness of postsynaptic density(PSD) were significantly decreased in Tg Con group compared with the WT Con group(P<0.05).After PHPB treatment,the degenerative changes in APP/PS1 mice were alleviated to some extent.The synapse number has been elevated significantly(P<0.05) and the PSD has been thickened as well.Golgi staining showed that the spine density of secondary and tertiary apical dendritic branches was significantly decreased in CA1 and DG areas of Tg Con group(P<0.05).Sholl analysis revealed a decrease of dendritic complexity in Tg Con group compared with WT Con group(P<0.05).These abnormalities were alleviated to some extent after PHPB treatment.Western blotting study showed that the protein levels of synaptic marker PSD-95 and synaptophysin were significantly decreased in the hippocampus of Tg Con group(P<0.05).A significant increase of PSD-95(P<0.05) and a slight increase of SYP were observed after the PHPB treatment.Besides,we found a significant increase in the ratio of LC3-Ⅱ/LC3-Ⅰ in Tg Con group compared with the WT Con group(P<0.01) and the relevant improvement after PHPB treatment(P<0.05),which showed the regulatory effect of PHPB on autophagy impairment.CONCLUSION PHPB showed protective effects on hippocampal neurons,synapses and dystrophic axons in APP/PS1 mice,which might help explain its role on cognitive improvement in Alzheimer disease treatment.
基金supported by National Institutes of Health Grants NS069688 and NS044916, TIRR Foundationthe Dr. Miriam and Sheldon G. Adelson Medical Research Foundation
文摘Myelinated axons of the peripheral and central nervous system(PNS&CNS)are divided into molecularly distinct excitable domains,including the axon initial segment(AIS)and nodes of Ranvier.The AIS is composed of a dense network of cytoskeletal proteins,cell adhesion molecules,and voltage gated ion channels and is located at the proximal most region of the axon(Koleand Stuart, 2012).
基金supported by the National Nature Science Foundation of China under Grant No.61335011Program for Changjiang,Scholars and Innovative Research Team in University under Grant No.IRT1115the Fund from Fujian Normal University under Grant No.2008100218.
文摘Action-potential encoded optical second harmonic generation(SHG)has been recently proposedfor use in det ecting the axonal damage in patients with demnyelinat ing diseases.In this study,thecharact erization of signal conduction along axons of two different levels of denyelination wasstudied via a modified Hodgkin Huxley model,because some types of demyelinating disease,i.e.primary progressive and secondary progesive multiple scleross,are dificult to be distinguishedby magnetic resonance imaging(MRI),we focused on the diferences in signal conduction between two diferent demyelinated axons,such as the first-level demyelination and the second.level demyelination.The spatio-temporal distribution of action potentials along denyelinatedaxons and conduction properties including the refractory period and frequency encoding in theset wo patterns were investigated.The results showed that denyelination could induce the decreaseboth in the amplitude of action potentials and the ability of frequency coding,Furthermore,t hesignal conduction velocity in the second-level dernyelination was about 21%slower than that inthe first-level demyelination.The refractory period in the second-level demyelination was about32%longer t han the first-level.Thus,detecting the signal conduction in demnyelinat ed axons byaction-potential encoded optical SHG could greatly improve the assessment of demyelinatingdisorders to classify the patients.This technique also offers a potential fast and noninvasiveoptical approach for monitoring membrane potential.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0701302)the Xiamen University Malaysia Research Fund, Malaysia (Grant No. XMUMRF/2020-C5/IMAT/0012)。
文摘The nature of saltatory conduction in myelinated axon described by equivalent circuit and circuit theory is still contentious. Recent experimental observations of action potentials transmitting through disjointed nerve fibers strongly suggest an electromagnetic wave propagation mechanism of the nerve signals. In this paper, we employ the electromagnetic wave model of the myelinated axon to describe action potential signal propagation. We use the experimental frequency-dependent conductivity and permittivity values of the nerve tissues in order to reliably calculate the electromagnetic modes by using electromagnetic mode solvers. We find that the electromagnetic waves above 10 kHz can be well confined in extracellular fluid–myelin sheath–intracellular fluid waveguide and propagate a distance of 7 mm without much attenuation. Our study may serve as one of the fundamental researches for the better understanding of the nervous system.
基金supported by a Jérome Lejeune Foundation award and a Kent State University Innovation Research Seed Award to KW
文摘During development and regeneration,axonal growth depends on a rapid response to extracellular growth and guidance molecules.One mechanism underlying this rapid response is local protein synthesis(Jung et al.,2012).Local protein synthesis is a highly tuned,
基金supported by grants from the Irish Research Council(R15897SVH/AMS/GWO’K)+4 种基金the National University of Ireland(R16189SVH/AMS/GWO’K)Royal Irish Academy(SVH/AMS/GWO’K)Science Foundation Ireland(15/CDA/3498GWO’K)
文摘Introduction: Parkinson's disease (PD) is a chronic, age-re- lated neurodegenerative disorder that affects 1-2% of the population over the age of 65. PD is characterised by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. This leads to disabling motor symptoms, due to the striatal DA denervation. Despite decades of research, there is still no therapy that can slow, stop or regenerate the dying midbrain DA neurons in PD.
文摘Human central nerve system(CNS)is an extremely complex and delicate structure.While regeneration is possible in some reptiles and fish CNS,the regeneration capacity seems completely lost in adult mammals.Therefore,the classic concept is that once neurons in mammal
基金supported by an Australian Postgraduate Award to D.A
文摘The developing olfactory system - merging of the periph- eral and central nervous systems: The olfactory system is responsible for the sense of smell and is comprised of a complex topographic map that regenerates throughout life. In rodents each olfactory sensory neuron expresses one of N 1,300 odorant receptors with the neurons being distributed mosaically within the epithelium. The axons of the sensory neurons do not maintain near-neighbour relationships and instead project to disparate topographic targets in the olfac- tory bulb within the central nervous system. The develop- ment of the targets relies on the intermingling of the sensory axons with the interneurons, glia and second order neurons of the olfactory bulb. Thus the formation of the olfactory system involves the coordinated integration of the axons of the peripheral olfactory sensory neurons with the cells of the olfactory bulb.
基金supported by a grant from the Instructional Program of Science and Technology Bureau of Wuxi City of China,No.0302B010507130039PB
文摘The contactin-associated protein (Caspr) family participates in nerve excitation and conduction, and neurotransmitter release in myelinated axons. We analyzed the structures and functions of the Caspr family- CNTNAP1 (Casprl), CNTNAP2 (Caspr2), CNTNAP3 (Caspr3), CNTNAP4 (Caspr4) and CNTNAP5 (Caspr5), Casprl-5 is not only involved in the formation of myelinated axons, but also participates in maintaining the stability of adjacent connections. Casprl participates in the formation, differentiation, and proliferation of neurons and astrocytes, and in motor control and cognitive function. We also analyzed the relationship between the Caspr family and neurodegenerative diseases, multiple sclerosis, and autoimmune encephalitis. However, the effects of Caspr on disease course and prognosis remain poorly understood. The effects of Caspr on disease diagnosis and treatment need further investigation.
文摘Previous investigations of retrograde survival signaling by nerve growth factor (NGF) and other neurotrophins have supported diverse mechanisms, but all proposed mechanisms have in common the generation of survival signals retrogradely transmitted to the neuronal cell bodies. We report the finding of a retrograde apoptotic signal in axons that is suppressed by local NGF signaling. NGF withdrawal from distal axons alone was sufficient to activate the pro-apoptotic transcription factor, c-jun, in the cell bodies. Providing NGF directly to cell bodies, thereby restoring a source of NGF-induced survival signals, could not prevent c-jun activation caused by NGF withdrawal from the distal axons. This is evidence that c-jun is not activated due to loss of survival signals at the cell bodies. Moreover, blocking axonal transport with colchicine inhibited c-jun activation caused by NGF deprivation suggesting that a retrogradely transported pro-apoptotic signal, rather than loss of a retrogradely transported survival signal, caused c-jun activation. Additional experiments showed that activation of c-jun, pro-caspase-3 cleavage, and apoptosis were blocked by the protein kinase C inhibitors, rottlerin and chelerythrine, only when applied to distal axons suggesting that they block the axon-specific pro-apoptotic signal. The rottlerin-sensitive mechanism was found to regulate glyco- gen synthase kinase 3 (GSK3) activity. The effect of siRNA knockdown, and pharmacological inhibition of GSK3 suggests that GSK3 is required for apoptosis caused by NGF deprivation and may function as a retrograde carrier of the axon apoptotic signal. The existence of a retrograde death signaling system in axons that is suppressed by neurotro- phins has broad implications for neurodevelopment and for discovering treatments for neurodegenerative diseases and neurotrauma.
基金supported by the National Natural Science Foundation of China,No. 10572085Shanghai Leading Academic Discipline Projects,No. S30106
文摘A mathematical model has been formulated in accordance with cell chemotaxis and relevant experimental data. A three-dimensional lattice Boltzmann method was used for numerical simulation. The present study observed the effects of glial scar size and inhibitor concentration on regenerative axonal growth following spinal cord transection. The simulation test comprised two parts: (1) when release rates of growth inhibitor and promoter were constant, the effects of glial scar size on axonal growth rate were analyzed, and concentrations of inhibitor and promoters located at the moving growth cones were recorded. (2) When the glial scar size was constant, the effects of inhibitor and promoter release rates on axonal growth rate were analyzed, and inhibitor and promoter concentrations at the moving growth cones were recorded. Results demonstrated that (1) a larger glial scar and a higher release rate of inhibitor resulted in a reduced axonal growth rate. (2) The axonal growth rate depended on the ratio of inhibitor to promoter concentrations at the growth cones. When the average ratio was 〈 1.5, regenerating axons were able to grow and successfully contact target cells.
基金discussed here on kinesin-5 inhibition as a means for augmenting nerve regeneration after injury was supported mainly by grants from the Craig H.Neilsen Foundation
文摘Microtubules have been identified as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited benefits for regeneration, while at the same time may be detrimental to the normal work that microtubules perform for the axon. Kinesin-5 (also called kifl I or EgS), a molecular motor protein best known for its crucial role in mitosis, acts as a brake on microtubule movements by other motor proteins in the axon. Drugs that inhibit kinesin-5, originally developed to treat cancer, result in greater mobility of microtubules in the axon and an overall shift in the forces on the microtubule array. As a result, the axon grows faster, retracts less, and more readily enters environments that are inhibitory to axonal regeneration. Thus, drugs that inhibit kinesin-5 offer a novel microtubule-based means to boost axonal regeneration without the concerns that accompany abnormal stabilization of the microtubule array. Even so, inhibiting kinesin-5 is not without its own caveats, such as potential problems with navigation of the regenerating axon to its target, as well as morphological effects on dendrites that could affect learning and memory if the drugs reach the brain.