We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combi...We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combination of an inner ring with an azimuthally polarized field and an outer ring with a radially polarized field and a phase factor can produce an optical cage with a dark region enclosed by higher intensity. The shape of the cage can be tailored by appropriately adjusting the parameters of double-mode beams. Furthermore, multiple 3D optical cages can be realized by applying the shift theorem of the Fourier transform and macro-pixel sampling algorithm to a double-ring shaped radially and azimuthally polarized beam.展开更多
Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair ...Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair of vortices of opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane, which results in the generation of many novel focal patterns. The usable focal structures generated through the tight focusing of the double-vortex beams may find applications in micro-particle trapping, manipulation, and material processing, etc.展开更多
The intensity distribution in the focal region of a high-NA lens for the incident azimuthally polarized multi Gaussian beam transmitted through a multi belt spiral phase hologram is studied on the basis of the vector ...The intensity distribution in the focal region of a high-NA lens for the incident azimuthally polarized multi Gaussian beam transmitted through a multi belt spiral phase hologram is studied on the basis of the vector diffraction theory. Here we report a new method used to generate a needle of transversely polarized light beam with sub diffraction beam size of 0.366A that propagates without divergence over a long distance of about 22A in free space. We also expect that such a light needle of transversely polarized beam may find its applications in utilizing optical materials or instruments responsive to the transversal field only.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.91750202,11530046,and 11474156)the National Key R&D Program of China(No.2017YFA0303700)+1 种基金the Collaborative Innovation Center of Advanced Microstructures of Chinathe Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics of China
文摘We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combination of an inner ring with an azimuthally polarized field and an outer ring with a radially polarized field and a phase factor can produce an optical cage with a dark region enclosed by higher intensity. The shape of the cage can be tailored by appropriately adjusting the parameters of double-mode beams. Furthermore, multiple 3D optical cages can be realized by applying the shift theorem of the Fourier transform and macro-pixel sampling algorithm to a double-ring shaped radially and azimuthally polarized beam.
文摘Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair of vortices of opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane, which results in the generation of many novel focal patterns. The usable focal structures generated through the tight focusing of the double-vortex beams may find applications in micro-particle trapping, manipulation, and material processing, etc.
文摘The intensity distribution in the focal region of a high-NA lens for the incident azimuthally polarized multi Gaussian beam transmitted through a multi belt spiral phase hologram is studied on the basis of the vector diffraction theory. Here we report a new method used to generate a needle of transversely polarized light beam with sub diffraction beam size of 0.366A that propagates without divergence over a long distance of about 22A in free space. We also expect that such a light needle of transversely polarized beam may find its applications in utilizing optical materials or instruments responsive to the transversal field only.