Iron(Ⅲ) loaded novolac-based network adsorbents 1 and 2 were studied for efficient removal of azo-dye pollutants from aqueous solutions. The adsorption behavior was evaluated by using methyl orange and orange-G as mo...Iron(Ⅲ) loaded novolac-based network adsorbents 1 and 2 were studied for efficient removal of azo-dye pollutants from aqueous solutions. The adsorption behavior was evaluated by using methyl orange and orange-G as model azo dyes. The effect of parameters such as contact time and initial dye concentration on the adsorption of azo dyes was studied. The results showed that loading of Fe(Ⅲ) onto the sorbent networks has noticeable effect on azo-dye sorption capacity. The adsorption equilibrium data were fitted to Freundlich isotherm model. Besides, the reusability of the dye loaded sorbents was investigated on adjusting pH of solutions.展开更多
Nanosized zero-valent iron (NZVI) supported on the cation exchange resin was synthesized and applied to decompose some water soluble azo dyes. The decomposition efficiency for azo dyes was evaluated by using the aqueo...Nanosized zero-valent iron (NZVI) supported on the cation exchange resin was synthesized and applied to decompose some water soluble azo dyes. The decomposition efficiency for azo dyes was evaluated by using the aqueous suspensions and parked column of this material. Batch experiments indicated that this novel material exhibited excellent degradation ability for 0.05 g·L1 of Acid Orange 7, Acid Orange 8, Acid Orange 10, Sunset Yellow, and Methyl Orange, with decolorization ratio up to 95% in 4 min; pH value was the key factor for degradation and H+ was one of the reactants; adsorption of azo dyes onto the material existed at the beginning but reduced gradually until disappearing completely. For the packed column system, 58%~90% of azo dyes were decomposed in the 1st circle of solution passing through the column, and the adsorption onto the materials could accelerate the degradation azo dyes with the increasing reaction time. During the degradation process, Fe2+, the product of NZVI, was exchanged to the resin again and could be reduced to Fe0 by KBH4 for reusing. The 10th refreshed NZVI possessed reductive activity up to 90% of the newly systhesized NZVI. Decomposing pollutants in the aqueous solution with columns packed with NZVI immobilized on the cation exchange resin is a promising technology that can solve the reclaiming and refreshing problem of NZVI.展开更多
A series of three-dimensional opal photonic crystals based on the polymer was synthesized and applied inthe field of photo-induced birefringence. The data show that the photo-induced birefringence(PIB) of pure Sudan...A series of three-dimensional opal photonic crystals based on the polymer was synthesized and applied inthe field of photo-induced birefringence. The data show that the photo-induced birefringence(PIB) of pure Sudan IIIfilm could be enhanced by increasing the thickness of azo films. When Sudan III was distributed on thethree-dimensional opal photonic crystals, the photo-induced birefringence process could be modulated. In addition,the data also exhibit that the PIB processes with different pumping polarization directions are sensitive to the role ofphotonic crystals. The results could be beneficial to further understanding the photo-induced birefringence and uti-lizing the photonic crystals.展开更多
In order to study the effect of mixing dye in ferroelectric liquid crystal (FLC) materials, the phase transition temperature and electro-optical properties of azo dye doped FLC samples have been investigated. All th...In order to study the effect of mixing dye in ferroelectric liquid crystal (FLC) materials, the phase transition temperature and electro-optical properties of azo dye doped FLC samples have been investigated. All the properties have been found to be changed drastically. The results have revealed that not only the SmC^*- SmA^* transition temperature decreased markedly by the addition of azo-dye, but also dye-doped FLC had lower threshold voltage and saturation voltage than the pure FLC.展开更多
Bioremediation is an eco-compatible and economical approach to counter textile dye menace. The isolated Lentinus squarrosulus AF5 was assessed for decolourization of textile azo dyes, and had shown ~93%, 88% and 70% d...Bioremediation is an eco-compatible and economical approach to counter textile dye menace. The isolated Lentinus squarrosulus AF5 was assessed for decolourization of textile azo dyes, and had shown ~93%, 88% and 70% decolorization of Reactive blue 160 (RB160), Reactive black 5 (RB5) and Amido black 10B (AB10B) respectively. Further analysis using UV-vis, HPLC, and FTIR, <sup>1</sup>H NMR had shown the degradation of the dyes. Toxicity analysis of the metabolites was performed using seed germination and plant growth on two agriculturally important plants Guar (Cyamopsis tetragonoloba) and wheat (Triticum aestivum) as well as cytotoxicity analysis using the human keratinocyte cell line (HaCaT). The dye mix appeared inhibitory for seed germination (20% - 40%), whereas metabolites were non-inhibitory for germination. Treatment of HaCaT cells with of dye mix and metabolites led into 45% and ~100% of cell viability of HaCaT cells respectively. Therefore, metabolites following degradation of the dye mix were observed to be non-toxic.展开更多
文摘Iron(Ⅲ) loaded novolac-based network adsorbents 1 and 2 were studied for efficient removal of azo-dye pollutants from aqueous solutions. The adsorption behavior was evaluated by using methyl orange and orange-G as model azo dyes. The effect of parameters such as contact time and initial dye concentration on the adsorption of azo dyes was studied. The results showed that loading of Fe(Ⅲ) onto the sorbent networks has noticeable effect on azo-dye sorption capacity. The adsorption equilibrium data were fitted to Freundlich isotherm model. Besides, the reusability of the dye loaded sorbents was investigated on adjusting pH of solutions.
基金the National Natural Science Foundation of China (Grant No. 20537020)
文摘Nanosized zero-valent iron (NZVI) supported on the cation exchange resin was synthesized and applied to decompose some water soluble azo dyes. The decomposition efficiency for azo dyes was evaluated by using the aqueous suspensions and parked column of this material. Batch experiments indicated that this novel material exhibited excellent degradation ability for 0.05 g·L1 of Acid Orange 7, Acid Orange 8, Acid Orange 10, Sunset Yellow, and Methyl Orange, with decolorization ratio up to 95% in 4 min; pH value was the key factor for degradation and H+ was one of the reactants; adsorption of azo dyes onto the material existed at the beginning but reduced gradually until disappearing completely. For the packed column system, 58%~90% of azo dyes were decomposed in the 1st circle of solution passing through the column, and the adsorption onto the materials could accelerate the degradation azo dyes with the increasing reaction time. During the degradation process, Fe2+, the product of NZVI, was exchanged to the resin again and could be reduced to Fe0 by KBH4 for reusing. The 10th refreshed NZVI possessed reductive activity up to 90% of the newly systhesized NZVI. Decomposing pollutants in the aqueous solution with columns packed with NZVI immobilized on the cation exchange resin is a promising technology that can solve the reclaiming and refreshing problem of NZVI.
文摘A series of three-dimensional opal photonic crystals based on the polymer was synthesized and applied inthe field of photo-induced birefringence. The data show that the photo-induced birefringence(PIB) of pure Sudan IIIfilm could be enhanced by increasing the thickness of azo films. When Sudan III was distributed on thethree-dimensional opal photonic crystals, the photo-induced birefringence process could be modulated. In addition,the data also exhibit that the PIB processes with different pumping polarization directions are sensitive to the role ofphotonic crystals. The results could be beneficial to further understanding the photo-induced birefringence and uti-lizing the photonic crystals.
基金supported by the National"973"Project of China under Grant No.2003CB314704.
文摘In order to study the effect of mixing dye in ferroelectric liquid crystal (FLC) materials, the phase transition temperature and electro-optical properties of azo dye doped FLC samples have been investigated. All the properties have been found to be changed drastically. The results have revealed that not only the SmC^*- SmA^* transition temperature decreased markedly by the addition of azo-dye, but also dye-doped FLC had lower threshold voltage and saturation voltage than the pure FLC.
文摘Bioremediation is an eco-compatible and economical approach to counter textile dye menace. The isolated Lentinus squarrosulus AF5 was assessed for decolourization of textile azo dyes, and had shown ~93%, 88% and 70% decolorization of Reactive blue 160 (RB160), Reactive black 5 (RB5) and Amido black 10B (AB10B) respectively. Further analysis using UV-vis, HPLC, and FTIR, <sup>1</sup>H NMR had shown the degradation of the dyes. Toxicity analysis of the metabolites was performed using seed germination and plant growth on two agriculturally important plants Guar (Cyamopsis tetragonoloba) and wheat (Triticum aestivum) as well as cytotoxicity analysis using the human keratinocyte cell line (HaCaT). The dye mix appeared inhibitory for seed germination (20% - 40%), whereas metabolites were non-inhibitory for germination. Treatment of HaCaT cells with of dye mix and metabolites led into 45% and ~100% of cell viability of HaCaT cells respectively. Therefore, metabolites following degradation of the dye mix were observed to be non-toxic.