期刊文献+
共找到8,498篇文章
< 1 2 250 >
每页显示 20 50 100
Finite element model simulation and back propagation neural network modeling of void closure for an extra-thick plate during gradient temperature rolling
1
作者 Shun-hu Zhang Wen-hao Tian +4 位作者 Li-zhi Che Wei-jian Chen Yan Li Liang-wei Wan Zi-qi Yin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第9期2236-2247,共12页
The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element mode... The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element model of the gradient temperature rolling process was first developed and validated.The prediction error of the model for the rolling force is less than 2.51%,which has provided the feasibility of imbedding a defect in it.Based on the relevant data obtained from the simulation,the BP neural network was used to establish a prediction model for the compression degree of a void defect.After statistical analysis,80%of the data had a hit rate higher than 95%,and the hit rate of all data was higher than 90%,which indicates that the BP neural network can accurately predict the compression degree.Meanwhile,the comparisons between the results with the gradient temperature rolling and uniform temperature rolling,and between the results with the single-pass rolling and multi-pass rolling were discussed,which provides a theoretical reference for developing process parameters in actual production. 展开更多
关键词 bp neural network Finite element model Gradient temperature rolling Void defect Extra-thick plate
原文传递
基于拌和生产数据的BP神经网络混凝土抗压强度预测 被引量:1
2
作者 王海英 李子彤 +1 位作者 张英治 王晨光 《建筑科学与工程学报》 CAS 北大核心 2024年第3期18-25,共8页
为解决混凝土生产中抗压强度试验周期长及工程管理存在滞后性的问题,提出了一种基于混凝土拌和生产实时监控数据的BP神经网络混凝土抗压强度预测模型。以混凝土拌和生产中的8项物料生产称重数据和5项生产配比数据作为预测输入变量,建立... 为解决混凝土生产中抗压强度试验周期长及工程管理存在滞后性的问题,提出了一种基于混凝土拌和生产实时监控数据的BP神经网络混凝土抗压强度预测模型。以混凝土拌和生产中的8项物料生产称重数据和5项生产配比数据作为预测输入变量,建立200组混凝土拌和站生产监控数据和对应的抗压强度试验数据样本集,按照6∶2∶2比例划分为训练集、验证集和测试集;分别以C40配比混凝土拌和生产的8项物料称重数据和全部13项数据作为输入变量,进行混凝土28 d抗压强度预测,将预测结果与实际试验结果进行比较,验证所提出BP神经网络模型的预测效果。结果表明:所提出的BP神经网络混凝土强度预测模型能较好地实时预测混凝土28 d抗压强度,且相对误差优于利用7 d抗压强度试验数据估算值;8项物料称重数据作为输入变量的BP神经网络预测模型预测精度更好,平均绝对百分比误差为0.82%,均方根误差为0.52 MPa;利用不同拌和站C20配比、C30配比混凝土拌和生产监控数据对8项输入变量BP神经网络混凝土抗压强度预测模型进行适应性验证可知,其预测平均绝对误差均在0.5 MPa之内,平均绝对百分比误差均小于2%,与C40配比预测误差一致;该预测模型充分挖掘了混凝土拌和站生产实时监控数据的价值,实现了传统混凝土抗压试验结果提前化,对提高工程建设质量水平具有重要意义。 展开更多
关键词 混凝土 预测模型 bp神经网络 抗压强度 拌和生产监控数据
下载PDF
基于PSO-BP神经网络的分拣机器人视觉反馈跟踪 被引量:1
3
作者 杨静宜 白向伟 《国外电子测量技术》 2024年第1期166-172,共7页
针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信... 针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信息,建立分拣机器人运动学模型,并求解分拣机器人机械臂输出位置和输入位置的误差函数;利用PSO算法优化BP神经网络的权值与偏置;在权值与偏置优化后的BP神经网络内,输入误差函数,预测分拣机器人视觉反馈跟踪控制量;利用预测视觉反馈跟踪控制量,在线调整增量式比例-积分-微分(proportional-integral-derivative,PID)的参数,输出高精度的分拣机器人视觉反馈跟踪控制量,实现分拣机器人视觉反馈跟踪。实验结果表明,该方法可有效视觉反馈跟踪分拣机器人机械臂的关节角;存在干扰情况下,在运行时间为10 s左右时,阶跃响应趋于稳定;有干扰情况下,视觉反馈跟踪的平均误差为0.09 cm,耗时平均值为0.10 ms;无干扰情况下,平均误差为0.03 cm,耗时平均值为0.04 ms。 展开更多
关键词 PSO-bp神经网络 分拣机器人 视觉反馈跟踪 运动学模型 误差函数 增量式PID
下载PDF
基于GWO-BP神经网络及粮食压缩实验对粮食孔隙率的预测
4
作者 陈家豪 李嘉欣 +4 位作者 郑德乾 尹君 黄海荣 葛蒙蒙 张佳怡 《粮油食品科技》 CAS CSCD 北大核心 2024年第2期186-193,共8页
孔隙率是影响粮堆内热湿传递的关键参数,为探究粮仓中散装粮堆孔隙率的分布规律,通过开展粮食压缩实验来获取不同的粮食种类在不同水分含量和竖向压力条件下的孔隙率。提出了一种基于灰狼算法优化BP(GWO-BP)神经网络的粮食单元体孔隙率... 孔隙率是影响粮堆内热湿传递的关键参数,为探究粮仓中散装粮堆孔隙率的分布规律,通过开展粮食压缩实验来获取不同的粮食种类在不同水分含量和竖向压力条件下的孔隙率。提出了一种基于灰狼算法优化BP(GWO-BP)神经网络的粮食单元体孔隙率预测模型,并将该模型与BP神经网络模型、随机森林模型的孔隙率预测结果进行对比,最后利用粮食单元箱实验对该模型的泛化能力进行验证。结果表明,GWO-BP神经网络模型的孔隙率预测性能最佳,该模型的评价指标R2为0.960 5、RMSE为0.013 7及MAE为0.0131,均在允许的范围内。本研究为粮食孔隙率的确定提供了一种神经网络预测的方法,为深入开展粮堆多场耦合分析提供了重要基础,为安全储粮提供了理论支持。 展开更多
关键词 GWO-bp模型 粮食孔隙率 压缩实验 预测
下载PDF
基于BP神经网络的高校教师精准教学能力评价模型构建
5
作者 魏培文 朱珂 +3 位作者 叶海智 张潍杰 张利远 闫娟 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期108-116,共9页
通过精准教学以促进学生个性化成长是教育理想和国家政策的不懈追求.高校教师是实施精准教学的“基”,现有关于其教学能力的评价体系中普遍存在概念不清和多采用主观构建评价指标的问题.为此,开展了基于BP神经网络的高校教师精准教学能... 通过精准教学以促进学生个性化成长是教育理想和国家政策的不懈追求.高校教师是实施精准教学的“基”,现有关于其教学能力的评价体系中普遍存在概念不清和多采用主观构建评价指标的问题.为此,开展了基于BP神经网络的高校教师精准教学能力评价模型研究.首先,以理论研究为基础,对精准教学能力进行等级划分并构建评价指标框架,运用层级分析法建立指标权重;其次,利用BP神经网络智能学习的特性,以不同数据类型的指标值为输入,对应能力综合值为输出,检验精准教学能力分级及指标权重的合理性,进而生成较为客观的评价模型;最后,利用开发的评价系统和调查问卷进行样本数据采集和模型检验,从神经网络对数据的分类、拟合及仿真结果来看,模型能够对高校教师的精准教学能力进行客观评价,教师对模型测量结果的准确性也具有较高认可度. 展开更多
关键词 教育数字化转型 高校教师 精准教学能力 评价模型 bp神经网络
下载PDF
基于HSS-MCC融合模型及SSA-BP神经网络开展深基坑超大变形预测研究
6
作者 倪小东 张宇科 +3 位作者 焉磊 王东兴 徐硕 王媛 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期35-45,共11页
软土环境下深基坑开挖变形特性研究中,多采用硬化类弹塑性模型进行分析,如HSS模型和MCC模型.南京河漫滩软土地区,深基坑开挖时局部常发生较大变形,部分土体变形状态介于小应变与大应变之间,单一模型无法准确预测土体变形特征.同时,BP神... 软土环境下深基坑开挖变形特性研究中,多采用硬化类弹塑性模型进行分析,如HSS模型和MCC模型.南京河漫滩软土地区,深基坑开挖时局部常发生较大变形,部分土体变形状态介于小应变与大应变之间,单一模型无法准确预测土体变形特征.同时,BP神经网络在基坑变形预测中得到广泛应用,但在训练过程中,权阈值易陷入局部最优解,影响预测的准确性.据此,依托南京地区典型软土深基坑工程,采用Midas中的HSS模型与MCC模型进行分析,比对两种模型的桩体变形量差异,并基于最小二乘准则对两模型进行线性融合,融合模型可对后续区段监测数据进行校准及补充.通过融合麻雀搜索算法对BP神经网络进行优化,在其训练过程中快速收敛,得到全局最优的权阈值,依托狭长基坑已开挖区段监测数据学习训练,进而依据后续区段浅部开挖揭露深部变形特征,预测结果与实测值吻合度较高.研究结果对软土地区深基坑大变形的预测研究具有重要参考价值. 展开更多
关键词 深基坑 大变形 HSS模型 MCC模型 bp神经网络 麻雀搜索算法
下载PDF
基于BP-DEMATEL的山西省冬小麦水足迹影响因素识别
7
作者 韩宇平 马伏枥 +3 位作者 贾冬冬 黄会平 张庚辰 苗浩东 《水资源保护》 EI CAS CSCD 北大核心 2024年第2期9-15,共7页
针对山西省冬小麦水足迹历史演变及关键影响因素识别问题,分析了1993—2021年山西省冬小麦水足迹历史演变规律,利用BP神经网络-决策实验室(BP-DEMATEL)模型对冬小麦水足迹演变的关键影响因素进行识别,将其分为驱动型因素及特征型因素,... 针对山西省冬小麦水足迹历史演变及关键影响因素识别问题,分析了1993—2021年山西省冬小麦水足迹历史演变规律,利用BP神经网络-决策实验室(BP-DEMATEL)模型对冬小麦水足迹演变的关键影响因素进行识别,将其分为驱动型因素及特征型因素,并揭示了影响因素之间的作用机制。结果表明:1993—2021年山西省冬小麦水足迹及单位水足迹均呈下降趋势;2021年山西省冬小麦总水足迹为27亿m^(3)(蓝水占比57%),单位水足迹为1 122 m^(3)/t,与前期高点相比分别下降38%(较1994年)和21%(较1993年);气温、相对湿度和灌溉面积为冬小麦水足迹演变的关键驱动型因素,化肥施用量和农业机械总动力为关键特征型因素。 展开更多
关键词 bp神经网络-决策实验室模型 水足迹 冬小麦 山西省
下载PDF
基于BP神经网络的集中供热二次网回水温度预测控制研究 被引量:1
8
作者 刘春蕾 史涵杰 +2 位作者 甄文爽 陈朝阳 丁一博 《仪表技术》 2024年第2期83-86,共4页
针对集中供热系统二次管网存在的水力失调问题,设计了二次网水力平衡调节及回水温度预测模型,并实施智能控制策略,以实现二次网回水温度的精准控制。首先,构建BP神经网络预测模型,将此模型的输出视为二次网回水温度给定值;其次,在整个... 针对集中供热系统二次管网存在的水力失调问题,设计了二次网水力平衡调节及回水温度预测模型,并实施智能控制策略,以实现二次网回水温度的精准控制。首先,构建BP神经网络预测模型,将此模型的输出视为二次网回水温度给定值;其次,在整个系统控制中,实施BP神经网络与PID控制器相结合的策略,进行二次网回水温度的控制。以高邑县某小区换热站数据为基础,通过阶跃响应曲线法建立二次网回水温度控制系统的数学模型,并通过BP-PID控制进行仿真实验。实验结果表明,与传统PID控制器相比,BP-PID控制器具有调节时间短、超调量小的优点,能够快速达到平稳状态。 展开更多
关键词 bp神经网络 预测模型 bp-PID控制器 二次网回水温度 水力平衡
下载PDF
基于LDA-BP神经网络的高校思政课教师数据驱动决策力评价研究
9
作者 齐磊磊 李晨曦 《黑龙江高教研究》 北大核心 2024年第3期110-119,共10页
数据驱动决策力为高校思政课教师提供科学合理的教学判断,对数据驱动决策力进行评价研究,有助于提高高校思政课教师的数据决策水平,进而提升思想政治教育教学质量。鉴于传统评测方法缺乏客观性与可重复性,运用LDA-BP神经网络技术构建高... 数据驱动决策力为高校思政课教师提供科学合理的教学判断,对数据驱动决策力进行评价研究,有助于提高高校思政课教师的数据决策水平,进而提升思想政治教育教学质量。鉴于传统评测方法缺乏客观性与可重复性,运用LDA-BP神经网络技术构建高校思政课数据驱动决策力的指标体系与评价模型。首先,运用LDA方法对高校思想政治教育相关的政策文本与研究文献进行主题提取,并将主题信息作为指标构建基础;其次,通过研读文献与政策文本,并结合主题分析结果构建高校思政课教师数据驱动决策力评价指标体系;最后,通过对BP神经网络的训练及测试来生成高校思政课教师数据驱动决策力的评价模型。研究表明,高校思政课教师的专业知识、教学水平以及数据分析与解读能力是影响数据驱动决策能力的关键因素,据此,理应从素养提升、文化培育、管理革新、政府支持等方面入手增强数据驱动决策力。 展开更多
关键词 思政课教师 数据驱动决策力 LDA模型 bp神经网络模型 评价
下载PDF
基于SSA-BP神经网络的车-轨-桥系统随机振动分析
10
作者 何旭辉 赵永帅 蔡陈之 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第8期3225-3236,共12页
轨道及桥梁结构参数随机性对车-轨-桥耦合系统的振动影响不能忽略。基于代理模型研究轨道-桥梁间3层弹簧刚度和弹簧阻尼以及桥梁刚度和阻尼的随机性对竖向车-轨-桥耦合系统动力响应的影响。首先,基于经典的车-轨-桥耦合系统力学模型(没... 轨道及桥梁结构参数随机性对车-轨-桥耦合系统的振动影响不能忽略。基于代理模型研究轨道-桥梁间3层弹簧刚度和弹簧阻尼以及桥梁刚度和阻尼的随机性对竖向车-轨-桥耦合系统动力响应的影响。首先,基于经典的车-轨-桥耦合系统力学模型(没有考虑桥墩),采用Monte-Carlo生成2 000个样本集,作为代理模型的训练集。然后,对比SSA-BP(麻雀优化BP算法)与传统BP神经网络、GA-BP神经网络(遗传优化BP算法)对车辆和桥梁响应的预测精度,同时探讨样本数量以及Levenberg-Marquardt和Bayesian Regulation训练算法对SSA-BP神经网络预测精度的影响。最后,假定各随机参数概率分布规律服从高斯型正态分布,所有随机参数变异系数均分为0.05、0.10、0.15、0.20、0.25等5个级别,采用所提出的SSA-BP神经网络研究轨道及桥梁的刚度和阻尼变化对车辆和桥梁响应极值的影响。结果表明:与经典的车-轨-桥耦合系统力学模型相比,所提出的代理模型具有更高的计算效率;SSA-BP模型对车辆和桥梁响应的预测精度高于GA-BP模型,GA-BP模型的预测精度高于传统的BP模型;SSA-BP模型采用Levenberg-Marquardt训练算法对车辆和桥梁响应的预测精度优于Bayesian Regulation训练算法的预测精度;道砟和桥梁之间弹簧刚度的随机变化对桥梁随机振动响应尤为明显;钢轨和轨枕之间弹簧刚度的随机性对车体响应的影响不可忽视,而桥梁刚度和阻尼随机性对车体的影响可不考虑。研究成果可为车轨桥系统随机振动响应预测进一步研究提供依据和参考。 展开更多
关键词 桥梁工程 车轨桥系统 SSA-bp 随机振动 代理模型
下载PDF
基于PCA-BP神经网络的巷道通风摩擦阻力系数预测模型
11
作者 高科 吕航宇 +1 位作者 戚志鹏 刘玉姣 《矿业安全与环保》 CAS 北大核心 2024年第1期7-13,共7页
根据实测巷道通风摩擦阻力系数数据的特点,建立了主成分分析PCA-BP神经网络预测模型。采用PCA法对影响巷道通风摩擦阻力系数的支护类型、断面形状、巷道宽、巷道高、支护部分周边长、巷道断面积和巷道长度7个因素进行降维。将降维后因... 根据实测巷道通风摩擦阻力系数数据的特点,建立了主成分分析PCA-BP神经网络预测模型。采用PCA法对影响巷道通风摩擦阻力系数的支护类型、断面形状、巷道宽、巷道高、支护部分周边长、巷道断面积和巷道长度7个因素进行降维。将降维后因素的贡献率进行排序筛选,得到3个主成分指标(F_(1)、F_(2)和F_(3)),作为BP神经网络输入层的神经元。利用实测数据对PCA-BP神经网络模型进行训练和测试,并将测试结果与支持向量机回归(SVM)模型和BP神经网络模型的测试结果进行对比,结果显示:全因素的BP神经网络预测模型和SVM预测模型的平均精度分别为92.9420%、93.0235%,而PCA-BP预测模型的平均精度达到了96.4325%。PCA-BP神经网络模型不但简化了网络结构,更提高了网络的泛化能力,使预测误差更小、精度更高,为更准确地获得巷道通风摩擦阻力系数提供了一种有效的方法。 展开更多
关键词 矿井通风 巷道通风摩擦阻力系数 预测模型 PCA-bp神经网络 主成分分析 影响因素
下载PDF
基于WOA-BP算法的自动压滤机脱水指标预测模型研究
12
作者 刘惠中 闻成钰 +2 位作者 曾聪 万小青 王朔 《有色金属(选矿部分)》 CAS 2024年第9期72-79,共8页
随着全球工业化的不断发展,矿山的开采规模正在不断扩大,导致矿物资源逐渐贫化,细杂等难选矿物资源越来越多。选矿磨矿粒度越来越细,导致矿物分选后产品的脱水过滤越来越困难。为保证后续运输和冶炼工序对精矿含水率的生产需求,需要使... 随着全球工业化的不断发展,矿山的开采规模正在不断扩大,导致矿物资源逐渐贫化,细杂等难选矿物资源越来越多。选矿磨矿粒度越来越细,导致矿物分选后产品的脱水过滤越来越困难。为保证后续运输和冶炼工序对精矿含水率的生产需求,需要使用自动压滤机对精矿进行高效率的脱水处理。在精矿的过滤脱水过程中,影响自动压滤机脱水效率的因素众多。为更好地对脱水过程及生产指标进行控制,基于鲸鱼算法WOA优化的BP神经网络构建了一种WOA-BP神经网络模型,以入料浓度、入料时间、压榨时间、风干时间等4项影响脱水指标的因素为输入因子,以滤饼含水率和单位面积每小时处理量为输出因子,建立了脱水指标的预测模型,并对比分析单一BP神经网络模型和WOA-BP神经网络模型。结论如下:WOA-BP预测模型对滤饼含水率和单位面积每小时处理量的平均绝对误差分别为4.98%、8.83%,均方根误差分别为0.86%、3.43%,与单一的BP神经网络预测模型相比,该预测模型预测误差明显小于单一BP神经网络预测模型,脱水指标的预测结果更接近实测值,具有较高精确度。利用构建的WOA-BP预测模型,可以有效预测压滤机的脱水过滤指标,为后续对脱水过程的控制进行优化奠定了基础。 展开更多
关键词 脱水效率 bp神经网络模型 鲸鱼算法 指标预测
下载PDF
基于遗传算法和BP神经网络的矿区土壤重金属含量空间分布预测
13
作者 赵萍 阮旭东 +4 位作者 刘亚风 赵思逸 孙雨 常杰 周俊 《土壤》 CAS CSCD 北大核心 2024年第4期889-896,共8页
本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As... 本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As)含量的空间分布,并与BPNN和反比距离权重法(Inverse distance weighting,IDW)进行了比较。研究结果表明:受采矿活动影响,研究区土壤p H和重金属含量呈显著的空间分异性;GABP复合模型的数据扩增能够有效弥补BPNN对样本数量的依赖,同时结合了地理位置和高程属性,精度评价结果显示GABP模型的平均R^(2)、r、RMSE、MAE分别是IDW和BPNN的3.03倍、2.56倍,2.93倍、2.39倍,0.85倍、0.61倍,0.79倍、0.62倍,预测精度更高。模型解决了传统空间插值方法结果中可能出现负值和边界无法插值的问题,为土壤重金属含量空间分布预测提供了一种新方法。 展开更多
关键词 遗传算法 bp神经网络 GAbp模型 空间分布预测 重金属含量
下载PDF
M-CM-GA-BP算法的地表移动变形参数预测模型
14
作者 秦忠诚 高广慧 +1 位作者 李晓禾 席天乐 《黑龙江科技大学学报》 CAS 2024年第3期360-366,共7页
针对复杂的开采沉陷预测问题,研究22个工作面采动地表移动变形参数变化规律,提出了一种基于M-CM-GA-BP算法求取地表移动变形参数的预测模型。通过线性加权组合预测方法和遗传算法优化BP神经网络的权值和阈值,融合多元回归模型来提高地... 针对复杂的开采沉陷预测问题,研究22个工作面采动地表移动变形参数变化规律,提出了一种基于M-CM-GA-BP算法求取地表移动变形参数的预测模型。通过线性加权组合预测方法和遗传算法优化BP神经网络的权值和阈值,融合多元回归模型来提高地表移动变形参数的求取精度,以地表下沉系数q为例,将该模型与其他预测模型预测性能进行对比分析,验证模型的准确性。结果表明,该模型能够有效地提高地表移动变形参数的预测精度,模型的平均相对误差为1.294、均方根误差为0.013,为地表移动变形参数预测提供了一种可行方法。 展开更多
关键词 开采沉陷 bp神经网络 地表移动变形参数 组合模型 参数预测
下载PDF
基于改进麻雀搜索算法优化BPNN的电阻点焊质量预测
15
作者 罗震 董建伟 胡建明 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第5期445-451,共7页
电阻点焊技术由于具有高效、自动化程度高等焊接特点,被广泛应用于汽车、航空航天和公共交通等制造领域,由于焊点在封闭状态下进行,焊接过程存在诸多影响因素且无法直接检测,因此,准确预测电阻点焊质量是生产过程中必不可少的环节.本文... 电阻点焊技术由于具有高效、自动化程度高等焊接特点,被广泛应用于汽车、航空航天和公共交通等制造领域,由于焊点在封闭状态下进行,焊接过程存在诸多影响因素且无法直接检测,因此,准确预测电阻点焊质量是生产过程中必不可少的环节.本文以2219/5A06铝合金为研究对象,在3种不同的装配条件(包括间隙和间距)下进行电阻点焊工艺信号的分析,并进行人工智能建模.为了提高电阻点焊质量评价的性能和效率,本文采用Logistic-Tent(LT)复合映射改进麻雀搜索算法(SSA)对反向传播神经网络(LT-SSA-BPNN)模型进行优化,模型的输入和输出分别为多信号融合后的变量和熔核直径.实验结果表明,与传统的标准反向传播神经网络(BPNN)模型相比,经过LT-SSA-BP模型优化后,预测结果的平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)分别降低了36.17%、17.55%和51.75%.同时,LT-SSA-BP神经网络在添加了不同间隙和间距条件作为训练集后,其预测稳定性明显提高,可以成功预测电阻点焊质量. 展开更多
关键词 电阻点焊 质量预测 麻雀搜索算法 反向传播神经网络模型
下载PDF
早期牙髓炎患者iRoot BP Plus活髓切断术后疗效分析及列线图预测模型构建
16
作者 于艳玲 张婧瑜 +2 位作者 段海洁 孟楠 王亚妹 《宁夏医科大学学报》 2024年第7期685-689,711,共6页
目的构建早期牙髓炎患者iRoot BP Plus活髓切断术后失败的个体化预测模型。方法选取2019年1月至2021年12月于秦皇岛市海港医院进行iRoot BP Plus活髓切断术治疗的278例早期牙髓炎患者为研究对象,记录性别、年龄、穿髓孔直径等资料并进... 目的构建早期牙髓炎患者iRoot BP Plus活髓切断术后失败的个体化预测模型。方法选取2019年1月至2021年12月于秦皇岛市海港医院进行iRoot BP Plus活髓切断术治疗的278例早期牙髓炎患者为研究对象,记录性别、年龄、穿髓孔直径等资料并进行统计学分析,Logistic回归分析确定危险因素,绘制列线图预测模型,进行内部验证并评估临床预测效能及实用性。结果278例早期牙髓炎iRoot BP Plus活髓切断术后失败率为10.43%。将穿髓孔直径、腐质颜色、腐质质地提取为预测因子构建列线图预测模型,列线图预测模型的校正曲线与原始曲线及理想曲线接近,C-index为0.768(95%CI:0.722~0.833),模型拟合度高;列线图预测模型的阈值>0.16,可提供临床净收益,且临床净收益均高于独立预测因子。结论以穿髓孔直径、腐质颜色、腐质质地为预测因子构建的早期牙髓炎患者iRoot BP Plus活髓切断术后失败的列线图预测模型对iRoot BP Plus活髓切断术后失败的发生具有良好的预测价值。 展开更多
关键词 iRoot bp Plus 活髓切断术 牙髓炎 列线图预测模型
下载PDF
基于最小二乘法和BP神经网络的磁流变阻尼器H-B模型参数辨识方法
17
作者 张忠奎 张晗 闫洋洋 《机床与液压》 北大核心 2024年第4期126-131,共6页
针对Bingham模型磁流变阻尼器由于剪切稀化效应带来的阻尼力计算误差,在理论和仿真分析的基础上,提出一种最小二乘法和BP神经网络相结合的方法,对磁流变阻尼器H-B模型进行参数辨识,获得各参数与电流的关系,从而对磁流变阻尼器的阻尼力... 针对Bingham模型磁流变阻尼器由于剪切稀化效应带来的阻尼力计算误差,在理论和仿真分析的基础上,提出一种最小二乘法和BP神经网络相结合的方法,对磁流变阻尼器H-B模型进行参数辨识,获得各参数与电流的关系,从而对磁流变阻尼器的阻尼力进行准确计算。最后通过磁流变阻尼器实验对理论方法进行验证。结果表明:借助于磁流变阻尼器的仿真分析,最小二乘法和BP神经网络相结合的磁流变阻尼器H-B模型参数辨识方法精确度高、吻合性好,验证了参数辨识结果的通用性及准确性。 展开更多
关键词 磁流变液阻尼器 H-B模型 最小二乘法 bp神经网络
下载PDF
基于PIWT-IPSO-BP的污水厂出水COD含量的预测模型
18
作者 张净 窦慧芸 +1 位作者 蒋武 刘晓梅 《中国农村水利水电》 北大核心 2024年第9期15-20,28,共7页
在农业灌溉的领域中,化学需氧量(Chemical Oxygen Demand,COD)的测定是衡量水体中有机物污染程度的一个重要指标。当COD浓度超过60mg/L时,其对土壤质量和农作物的生长产生的负面影响成为不容忽视的问题。这一现象可能会严重影响农作物... 在农业灌溉的领域中,化学需氧量(Chemical Oxygen Demand,COD)的测定是衡量水体中有机物污染程度的一个重要指标。当COD浓度超过60mg/L时,其对土壤质量和农作物的生长产生的负面影响成为不容忽视的问题。这一现象可能会严重影响农作物的产量和质量,进而对农作物生产的可持续性构成挑战。因此,有必要精确预测污水处理厂出水COD浓度的变化趋势,从而促进其在农业灌溉中的有效应用。研究结合了改进的小波变换、改进的粒子群优化(Improved Particle Swarm Optimization,IPSO)算法和反向传播BP(Back Propagation,BP)神经网络作为预测模型。鉴于COD受到众多因素的影响,这些因素之间存在复杂的耦合关系,采用PCA进行特征提取。考虑到数据采集的过程中不可避免的噪声干扰,应用小波降噪对原始数据进行处理,以确保数据质量,提高模型准确性。在此基础上,基于BP神经网络算法构建污水处理厂出水COD的预测模型。为了解决BP神经网络参数选择可能遇到的盲目性问题,引入改进的粒子群算法对模型进行参数优化,以提高预测精度。实验结果表明,提出的PIWT-IPSO-BP模型预测效果良好,其平均绝对误差、均方根误差和决定系数分别为0.222、0.386和0.984。该模型在一定程度上改善了数据噪声、多因子制约等问题,为污水循环利用技术应用于农业灌溉方面提供了参考依据。 展开更多
关键词 化学需氧量 预测模型 小波变换 粒子群优化算法 bp神经网络
下载PDF
基于改进PSO-BP神经网络的热采管柱应力预测
19
作者 崔璐 李明峰 +3 位作者 王澎 牛科 邵帅超 常文权 《管道技术与设备》 CAS 2024年第2期10-16,23,共8页
稠油热采过程中,油套管柱由于在温度、地层等多重载荷作用下发生塑性形变进而导致断裂或失效。文中根据热采管柱高温服役工况,引入异步变化学习因子和自适应权重建立输入参数为注汽温度、井深、非均匀系数和水泥环温度,输出参数为套管... 稠油热采过程中,油套管柱由于在温度、地层等多重载荷作用下发生塑性形变进而导致断裂或失效。文中根据热采管柱高温服役工况,引入异步变化学习因子和自适应权重建立输入参数为注汽温度、井深、非均匀系数和水泥环温度,输出参数为套管应力的改进PSO-BP模型。文中以N80热采套管为例,选取260、280、300、320、340℃5种温度工况下有限元模拟结果作为训练数据,对比BP模型、GA-BP模型、MEA-BP模型、PSO-BP模型和改进PSO-BP模型在300℃工况温度下井深200、300、400、500、600、700 m处套管应力的预测值和试验值、有限元计算值。结果表明:改进PSO-BP模型预测的应力与试验值最接近,最大和最小误差分别为2.69%和0.06%。最后从训练数据、预测误差、计算时间等方面对建立的改进PSO-BP模型进行了评价,为热采管柱服役过程中的强度安全分析提供智能高效的模型。 展开更多
关键词 bp神经网络 应力 预测模型 粒子群优化算法
下载PDF
基于GRU-BP算法的高精度动态物流称重系统
20
作者 康杰 《机电工程》 CAS 北大核心 2024年第6期1127-1134,共8页
针对动态物流秤测量精度对载重、采样频率、带速较为敏感的问题,提出了一种高精度动态物流称重系统。首先,采用三因素五水平正交试验法,结合皮尔逊相关性检验原则,使用低通巴特沃斯与卡尔曼滤波器对传感器压力信号进行了滤波降噪处理,... 针对动态物流秤测量精度对载重、采样频率、带速较为敏感的问题,提出了一种高精度动态物流称重系统。首先,采用三因素五水平正交试验法,结合皮尔逊相关性检验原则,使用低通巴特沃斯与卡尔曼滤波器对传感器压力信号进行了滤波降噪处理,并将加速度信号作为模型输入信号,进行了特征补偿;然后,基于深度学习算法,提出了一种改进的门控循环单元模型,在该模型采样区间内将压力与振动改写为时序化信号,并将其共同输入门控循环单元(GRU)模型;最后,对GRU模型进行了改进,对其结构输出了层堆叠误差反向传播神经网络(BP),有效加强了模型的非线性映射能力。研究结果表明:在各类传动速度及测试货物下,该模型的最大测量误差相对于同类型深度学习模型长短期记忆(LSTM)神经网络、循环神经网络(RNN)时序模型及传统数值平均模型的误差,依次降低了16.14%、27.14%、76%,可用于各类称重系统。 展开更多
关键词 深度学习 动态测量系统 门控循环单元 反向传播神经网络 振动补偿 长短期记忆神经网络 循环神经网络
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部