This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga...This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome.展开更多
In order to calculate the propagation loss of electromagnetic waves produced by a transmitter, a variety of models based on empirical and deterministic formulas are used. In this study, one of the artificial neural ne...In order to calculate the propagation loss of electromagnetic waves produced by a transmitter, a variety of models based on empirical and deterministic formulas are used. In this study, one of the artificial neural networks models, Levenberg-Marquardt algorithm, which is quite effective for predicting the propagation is used and the results obtained by this algorithm are compared with the simulation results based on ITU-R 1546 and Epstein-Peterson models. In this paper, the propagation loss of FM radio station using artificial neural networks models is studied depending on the Levenberg-Marquardt algorithm. For training the artificial neural network, as the input data;range (r), effective antenna height (h) and terrain irregularity (△H) parameters are involved and measured values are treated as the output data. The good results obtained in the city area reveal that the artificial neural network is a very efficient method to compute models which integrate theoretical and experimental data. Meanwhile, the results show that an ANN model performs very well compared with theoretical and empiric propagation models with regard to prediction accuracy, complexity, and prediction time. By comparing the results, the RMSE for Neural Network Model using Levenberg-Marquardt is 9.57, and it is lower than that of classical propagation model using Epstein-Peterson for which RMSE is 10.26.展开更多
Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and ...Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy.展开更多
The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quad...The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quadratic polynomial regression equation and BP artificial neural network was developed. The effects of ethephon, gibberel in and mepiquat on shedding rate of staminate catkin of pro-terandrous walnut were investigated by modeling field test. Based on the modeling test results, the excessive staminate catkin thinning model of quadratic polynomial regression equation and BP artificial neural network was established, and it was validated by field test next year. The test data were divided into training set, vali-dation set and test set. The total 20 sets of data obtained from the modeling field test were randomly divided into training set (17) and validation set (3) by central composite design (quadric rotational regression test design), and the data obtained from the next-year field test were divided into the test set. The topological struc-ture of BP artificial neural network was 3-5-1. The results showed that the pre-diction errors of BP neural network for samples from the validation set were 1.355 0%, 0.429 1% and 0.353 8%, respectively; the difference between the predicted value by the BP neural network and validated value by field test was 2.04%, and the difference between the predicted value by the regression equation and validated value by field test was 3.12%; the prediction accuracy of BP neural network was over 1.0% higher than that of regression equation. The effective combination of quadratic polynomial stepwise regression and BP artificial neural network wil not only help to determine the effect of independent parameter but also improve the prediction accuracy.展开更多
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis...The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.展开更多
The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃...The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy.展开更多
The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-...The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-1 and the largest deformation up to 60%. On the basis of experiments, a BP artificial neural network (ANN) model was constructed to predict 2A70 aluminum alloy flow stress. True strain, strain rates and temperatures were input to the network, and flow stress was the only output. The comparison between predicted values and experimental data showed that the relative error for the trained model was less than ±3% for the sampled data while it was less than ±6% for the non-sampled data. Furthermore, the neural network model gives better results than nonlinear regression method. It is evident that the model constructed by BP ANN can be used to accurately predict the 2A70 alloy flow stress.展开更多
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the...The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point.展开更多
The aim of this study is to evaluate the performance of BP neural network techniques in predicting earthquakes occurring in the region of Himalayan belt (with the use of different types of input data). These parameter...The aim of this study is to evaluate the performance of BP neural network techniques in predicting earthquakes occurring in the region of Himalayan belt (with the use of different types of input data). These parameters are extracted from Himalayan Earthquake catalogue comprised of all minor, major events and their aftershock sequences in the Himalayan basin for the past 128 years from 1887 to 2015. This data warehouse contains event data, event time with seconds, latitude, longitude, depth, standard deviation and magnitude. These field data are converted into eight mathematically computed parameters known as seismicity indicators. These seismicity indicators have been used to train the BP Neural Network for better decision making and predicting the magnitude of the pre-defined future time period. These mathematically computed indicators considered are the clustered based on every events above 2.5 magnitude, total number of events from past years to 2014, frequency-magnitude distribution b-values, Gutenberg-Richter inverse power law curve for the n events, the rate of square root of seismic energy released during the n events, energy released from the event, the mean square deviation about the regression line based on the Gutenberg-Richer inverse power law for the n events, coefficient of variation of mean time and average value of the magnitude for last n events. We propose a three-layer feed forward BP neural network model to identify factors, with the actual occurrence of the earthquake magnitude M and other seven mathematically computed parameters seismicity indicators as input and target vectors in Himalayan basin area. We infer through comparing curve as observed from seismometer in Himalayan Earthquake catalogue comprised of all events above magnitude 2.5 mg, their aftershock sequences in the Himalayan basin of year 2015 and BP neural network predicting earthquakes in 2015. The model yields good prediction result for the earthquakes of magnitude between 4.0 and 6.0.展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer no...An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer nodes,same inputs and forecasting data were selected to train and forecast and then the relative errors were compared so as to confirm the NN structure.A model was set up and used to forecast concretely by Matlab.It is tested by examples and compared with the result of time series trigonometric function analytical method.The result indicates that the prediction errors of NN are small and the velocity of forecasting is fast.It can completely meet the actual needs of the control and run of the water supply system.展开更多
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I...Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.展开更多
A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificia...A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificial neural network was used in predicting BTP, modification on backpropagation algorithm was made in order to improve the convergence and self organize the hidden layer neurons. The adaptive prediction system developed on these techniques shows its characters such as fast, accuracy, less dependence on production data. The prediction of BTP can be used as operation guidance or control parameter.[展开更多
Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surf...Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments.展开更多
Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alt...Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alternative process that could be used for the beneficiation of ultra-fine material. This process has not been extensively used commercially because of its complex dependency on process parameters. In this paper, a selective flocculation process, using synthetic mixtures of hematite and kaolinite in different ratios, was attempted, and the ad-sorption mechanism was investigated by Fourier transform infrared (FTIR) spectroscopy. A three-layer artificial neural network (ANN) model (4?4?3) was used to predict the separation performance of the process in terms of grade, Fe recovery, and separation efficiency. The model values were in good agreement with experimental values.展开更多
To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are anal...To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.展开更多
The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the m...The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the models to predict volume content of composition in particie reinforced ceramies are established. The Al2O3/TiN ceramie cutting tool material was developed by ANN, whose mechanicai properties fully satisfy the cutting requirements.展开更多
In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and...In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and economically successful outcome.Since many parameters affect the blasting results in a complicated mechanism,employment of robust methods such as artificial neural network may be very useful.In this regard,this paper attends to simultaneous prediction of rock fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines in Iran.Back propagation neural network(BPNN) and radial basis function neural network(RBFNN) are adopted for the simulation.Also,regression analysis is performed between independent and dependent variables.For the BPNN modeling,a network with architecture 6-10-2 is found to be optimum whereas for the RBFNN,architecture 636-2 with spread factor of 0.79 provides maximum prediction aptitude.Performance comparison of the developed models is fulfilled using value account for(VAF),root mean square error(RMSE),determination coefficient(R2) and maximum relative error(MRE).As such,it is observed that the BPNN model is the most preferable model providing maximum accuracy and minimum error.Also,sensitivity analysis shows that inputs burden and stemming are the most effective parameters on the outputs fragmentation and backbreak,respectively.On the other hand,for both of the outputs,specific charge is the least effective parameter.展开更多
The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a...The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.展开更多
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga...In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively.展开更多
基金supported by the National Natural Science Foundation of China Grant No.30771858Jiangsu Provincial Natural Science Foundation Grant No.BK2007229Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome.
文摘In order to calculate the propagation loss of electromagnetic waves produced by a transmitter, a variety of models based on empirical and deterministic formulas are used. In this study, one of the artificial neural networks models, Levenberg-Marquardt algorithm, which is quite effective for predicting the propagation is used and the results obtained by this algorithm are compared with the simulation results based on ITU-R 1546 and Epstein-Peterson models. In this paper, the propagation loss of FM radio station using artificial neural networks models is studied depending on the Levenberg-Marquardt algorithm. For training the artificial neural network, as the input data;range (r), effective antenna height (h) and terrain irregularity (△H) parameters are involved and measured values are treated as the output data. The good results obtained in the city area reveal that the artificial neural network is a very efficient method to compute models which integrate theoretical and experimental data. Meanwhile, the results show that an ANN model performs very well compared with theoretical and empiric propagation models with regard to prediction accuracy, complexity, and prediction time. By comparing the results, the RMSE for Neural Network Model using Levenberg-Marquardt is 9.57, and it is lower than that of classical propagation model using Epstein-Peterson for which RMSE is 10.26.
基金Funded by National Natural Science Foundation of China(Nos.51502212,51672194 and 51472184)Hubei Province Natural Science Foundation of China(No.2018CFB760)+1 种基金Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(No.T201602)Key Program of Natural Science Foundation of Hubei Province(No.2017CFA004)
文摘Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy.
基金Supported by Key Science and Technology Program of Shanxi Province,China(002023)~~
文摘The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quadratic polynomial regression equation and BP artificial neural network was developed. The effects of ethephon, gibberel in and mepiquat on shedding rate of staminate catkin of pro-terandrous walnut were investigated by modeling field test. Based on the modeling test results, the excessive staminate catkin thinning model of quadratic polynomial regression equation and BP artificial neural network was established, and it was validated by field test next year. The test data were divided into training set, vali-dation set and test set. The total 20 sets of data obtained from the modeling field test were randomly divided into training set (17) and validation set (3) by central composite design (quadric rotational regression test design), and the data obtained from the next-year field test were divided into the test set. The topological struc-ture of BP artificial neural network was 3-5-1. The results showed that the pre-diction errors of BP neural network for samples from the validation set were 1.355 0%, 0.429 1% and 0.353 8%, respectively; the difference between the predicted value by the BP neural network and validated value by field test was 2.04%, and the difference between the predicted value by the regression equation and validated value by field test was 3.12%; the prediction accuracy of BP neural network was over 1.0% higher than that of regression equation. The effective combination of quadratic polynomial stepwise regression and BP artificial neural network wil not only help to determine the effect of independent parameter but also improve the prediction accuracy.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3303500).
文摘The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.
文摘The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy.
文摘The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-1 and the largest deformation up to 60%. On the basis of experiments, a BP artificial neural network (ANN) model was constructed to predict 2A70 aluminum alloy flow stress. True strain, strain rates and temperatures were input to the network, and flow stress was the only output. The comparison between predicted values and experimental data showed that the relative error for the trained model was less than ±3% for the sampled data while it was less than ±6% for the non-sampled data. Furthermore, the neural network model gives better results than nonlinear regression method. It is evident that the model constructed by BP ANN can be used to accurately predict the 2A70 alloy flow stress.
文摘The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point.
文摘The aim of this study is to evaluate the performance of BP neural network techniques in predicting earthquakes occurring in the region of Himalayan belt (with the use of different types of input data). These parameters are extracted from Himalayan Earthquake catalogue comprised of all minor, major events and their aftershock sequences in the Himalayan basin for the past 128 years from 1887 to 2015. This data warehouse contains event data, event time with seconds, latitude, longitude, depth, standard deviation and magnitude. These field data are converted into eight mathematically computed parameters known as seismicity indicators. These seismicity indicators have been used to train the BP Neural Network for better decision making and predicting the magnitude of the pre-defined future time period. These mathematically computed indicators considered are the clustered based on every events above 2.5 magnitude, total number of events from past years to 2014, frequency-magnitude distribution b-values, Gutenberg-Richter inverse power law curve for the n events, the rate of square root of seismic energy released during the n events, energy released from the event, the mean square deviation about the regression line based on the Gutenberg-Richer inverse power law for the n events, coefficient of variation of mean time and average value of the magnitude for last n events. We propose a three-layer feed forward BP neural network model to identify factors, with the actual occurrence of the earthquake magnitude M and other seven mathematically computed parameters seismicity indicators as input and target vectors in Himalayan basin area. We infer through comparing curve as observed from seismometer in Himalayan Earthquake catalogue comprised of all events above magnitude 2.5 mg, their aftershock sequences in the Himalayan basin of year 2015 and BP neural network predicting earthquakes in 2015. The model yields good prediction result for the earthquakes of magnitude between 4.0 and 6.0.
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
基金Supported by Foundation for University Key Teacher by Ministryof Education.
文摘An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer nodes,same inputs and forecasting data were selected to train and forecast and then the relative errors were compared so as to confirm the NN structure.A model was set up and used to forecast concretely by Matlab.It is tested by examples and compared with the result of time series trigonometric function analytical method.The result indicates that the prediction errors of NN are small and the velocity of forecasting is fast.It can completely meet the actual needs of the control and run of the water supply system.
基金National Natural Science Foundation of China(No. 60474021)
文摘Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.
文摘A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificial neural network was used in predicting BTP, modification on backpropagation algorithm was made in order to improve the convergence and self organize the hidden layer neurons. The adaptive prediction system developed on these techniques shows its characters such as fast, accuracy, less dependence on production data. The prediction of BTP can be used as operation guidance or control parameter.[
基金Supported by the National Natural Science Foundation of China(No.50879025)
文摘Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments.
基金the funding given by Council of Scientific and Industrial Research(CSIR)India through project NWP-31 for this project
文摘Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alternative process that could be used for the beneficiation of ultra-fine material. This process has not been extensively used commercially because of its complex dependency on process parameters. In this paper, a selective flocculation process, using synthetic mixtures of hematite and kaolinite in different ratios, was attempted, and the ad-sorption mechanism was investigated by Fourier transform infrared (FTIR) spectroscopy. A three-layer artificial neural network (ANN) model (4?4?3) was used to predict the separation performance of the process in terms of grade, Fe recovery, and separation efficiency. The model values were in good agreement with experimental values.
文摘To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.
文摘The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the models to predict volume content of composition in particie reinforced ceramies are established. The Al2O3/TiN ceramie cutting tool material was developed by ANN, whose mechanicai properties fully satisfy the cutting requirements.
文摘In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and economically successful outcome.Since many parameters affect the blasting results in a complicated mechanism,employment of robust methods such as artificial neural network may be very useful.In this regard,this paper attends to simultaneous prediction of rock fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines in Iran.Back propagation neural network(BPNN) and radial basis function neural network(RBFNN) are adopted for the simulation.Also,regression analysis is performed between independent and dependent variables.For the BPNN modeling,a network with architecture 6-10-2 is found to be optimum whereas for the RBFNN,architecture 636-2 with spread factor of 0.79 provides maximum prediction aptitude.Performance comparison of the developed models is fulfilled using value account for(VAF),root mean square error(RMSE),determination coefficient(R2) and maximum relative error(MRE).As such,it is observed that the BPNN model is the most preferable model providing maximum accuracy and minimum error.Also,sensitivity analysis shows that inputs burden and stemming are the most effective parameters on the outputs fragmentation and backbreak,respectively.On the other hand,for both of the outputs,specific charge is the least effective parameter.
基金supported by State Key Development Program of Basic Research of China (Grant No.2010CB429001)
文摘The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.
文摘In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively.