Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t...Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.展开更多
Hydraulic fracturing is widely used in geothermal resource exploitation, and many natural fractures exist in hot dry rock reservoirs due to in-situ stress and faults. However, the infuence of natural fractures on hydr...Hydraulic fracturing is widely used in geothermal resource exploitation, and many natural fractures exist in hot dry rock reservoirs due to in-situ stress and faults. However, the infuence of natural fractures on hydraulic fracture propagation is not considered in the current study. In this paper, based on the phase feld model, a thermo-hydro-mechanical coupled hydraulic fracture propagation model was established to reveal the infuence of injection time, fracturing method, injection fow rate, and natural fracture distribution on the fracture propagation mechanism. The results show that fracture complexity increases with an increase in injection time. The stress disturbance causes the fracture initiation pressure of the second cluster signifcantly higher than that of the frst and third clusters. The zipper-type fracturing method can reduce the degree of stress disturbance and increase fracture complexity by 7.2% compared to simultaneous hydraulic fracturing. Both low and high injection fow rate lead to a decrease in fracture propagation time, which is not conducive to an increase in fracture complexity. An increase in the natural fracture angle leads to hydraulic fracture crossing natural fracture, but has a lesser efect on fracture complexity. In this paper, we analyzed the infuence of diferent factors on initiation pressure and fracture complexity, providing valuable guidance for the exploitation of geothermal resources.展开更多
An ocean-acoustic joint model is developed for research of acoustic propagation uncertainty in internal wave environments.The internal waves are numerically produced by tidal forcing over a continental slope using an ...An ocean-acoustic joint model is developed for research of acoustic propagation uncertainty in internal wave environments.The internal waves are numerically produced by tidal forcing over a continental slope using an ocean model.Three parameters(i.e.,internal wave,source depth,and water depth)contribute to the dynamic waveguide environments,and result in stochastic sound fields.The sensitivity of the transmission loss(TL)to environment parameters,statistical characteristics of the TL variation,and the associated physical mechanisms are investigated by the Sobol sensitivity analysis method,the Monte Carlo sampling,and the coupled normal mode theory,respectively.The results show that the TL is most sensitive to the source depth in the near field,resulted from the initial amplitudes of higher-order modes;while in middle and far fields,the internal waves are responsible for more than 80%of the total acoustic propagation contribution.In addition,the standard deviation of the TL in the near field and the shallow layer is smaller than those in the middle and far fields and the deep layer.展开更多
This paper presents a study on a new rumor propagation model with nonlinear propagation rate and secondary propagation rate. We divide the total population into three groups, the ignorant, the spreader and the aware. ...This paper presents a study on a new rumor propagation model with nonlinear propagation rate and secondary propagation rate. We divide the total population into three groups, the ignorant, the spreader and the aware. The nonlinear incidence rate describes the psychological impact of certain serious rumors on social groups when the number of individuals spreading rumors becomes larger. The main contributions of this work are the development of a new rumor propagation model and some results of deterministic and stochastic analysis of the rumor propagation model. The results show the influence of nonlinear propagation rate and stochastic fluctuation on the dynamic behavior of the rumor propagation model by using Lyapunov function method and stochastic related knowledge. Numerical examples and simulation results are given to illustrate the results obtained.展开更多
Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high c...Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high convergence over the common numerical methods(e.g.finite element method,discrete element method,and particle manifold method)in dealing with three-dimensional and multicrack problems.However,current PFMs are mainly used to simulate mode-I(tensile)crack propagation but difficult to effectively simulate mode-II(shear)crack propagation.In this paper,a new mixed-mode PFM is established to simulate both mode-I and mode-II crack propagation of brittle rock by distinguishing the volumetric elastic strain energy and deviatoric elastic strain energy in the total elastic strain energy and considering the effect of compressive stress on mode-II crack propagation.Numerical solution method of the new mixed-mode PFM is proposed based on the staggered solution method with self-programmed subroutines UMAT and HETVAL of ABAQUS software.Three examples calculated using different PFMs as well as test results are presented for comparison.The results show that compared with the conventional PFM(which only simulates the tensile wing crack but not mode-II crack propagation)and the modified mixed-mode PFM(which has difficulty in simulating the shear anti-wing crack),the new mixed-mode PFM can successfully simulate the whole trajectories of mixed-mode crack propagation(including the tensile wing crack,shear secondary crack,and shear anti-wing crack)and mode-II crack propagation,which are close to the test results.It can be further extended to simulate multicrack propagation of anisotropic rock under multi-field coupling loads.展开更多
Here a Gaussian Shell Model Array (GSMA) beam is used to investigate the propagation characteristics in the jet engine exhaust region. It has great significance to improve various optical systems for wide application ...Here a Gaussian Shell Model Array (GSMA) beam is used to investigate the propagation characteristics in the jet engine exhaust region. It has great significance to improve various optical systems for wide application in trapping cold atoms, creating gratings, and atmospheric optical communication. We calculate analytical formulas for the spectral density (SD) and the propagation factors M<sub>x</sub>2</sup> and M<sub>y</sub>2</sup> of a GSMA beam. The influence of inner scale of turbulence in the jet engine exhaust region on its power spectrum has been also analyzed. According to these results, the influence of turbulence in a jet engine exhaust on a GSMA beam has been reduced by changing the parameters of light source and turbulence. For example, it is an excellent tool for mitigation of the jet engine exhaust-induced anisotropy of turbulence to increase the source coherence length, the root-mean-squared (rms) beam width, the wavelength or reduce the outer scale of turbulence.展开更多
基金supported by the China Scholarship Council (CSC) (No.202206020149)the Academic Excellence Foundation of BUAA for PhD Students,the Funding Project of Science and Technology on Reliability and Environmental Engineering Laboratory (No.6142004210106).
文摘Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.
基金supported by the National Natural Science Foundation of China(52174024).
文摘Hydraulic fracturing is widely used in geothermal resource exploitation, and many natural fractures exist in hot dry rock reservoirs due to in-situ stress and faults. However, the infuence of natural fractures on hydraulic fracture propagation is not considered in the current study. In this paper, based on the phase feld model, a thermo-hydro-mechanical coupled hydraulic fracture propagation model was established to reveal the infuence of injection time, fracturing method, injection fow rate, and natural fracture distribution on the fracture propagation mechanism. The results show that fracture complexity increases with an increase in injection time. The stress disturbance causes the fracture initiation pressure of the second cluster signifcantly higher than that of the frst and third clusters. The zipper-type fracturing method can reduce the degree of stress disturbance and increase fracture complexity by 7.2% compared to simultaneous hydraulic fracturing. Both low and high injection fow rate lead to a decrease in fracture propagation time, which is not conducive to an increase in fracture complexity. An increase in the natural fracture angle leads to hydraulic fracture crossing natural fracture, but has a lesser efect on fracture complexity. In this paper, we analyzed the infuence of diferent factors on initiation pressure and fracture complexity, providing valuable guidance for the exploitation of geothermal resources.
基金the National Key Research and Development Program of China(Grant No.2020YFA0607900)the National Natural Science Foundation of China(Grant Nos.42176019 and 11874061)the Youth Innovation Promotion Association CAS(Grant No.2021023).
文摘An ocean-acoustic joint model is developed for research of acoustic propagation uncertainty in internal wave environments.The internal waves are numerically produced by tidal forcing over a continental slope using an ocean model.Three parameters(i.e.,internal wave,source depth,and water depth)contribute to the dynamic waveguide environments,and result in stochastic sound fields.The sensitivity of the transmission loss(TL)to environment parameters,statistical characteristics of the TL variation,and the associated physical mechanisms are investigated by the Sobol sensitivity analysis method,the Monte Carlo sampling,and the coupled normal mode theory,respectively.The results show that the TL is most sensitive to the source depth in the near field,resulted from the initial amplitudes of higher-order modes;while in middle and far fields,the internal waves are responsible for more than 80%of the total acoustic propagation contribution.In addition,the standard deviation of the TL in the near field and the shallow layer is smaller than those in the middle and far fields and the deep layer.
文摘This paper presents a study on a new rumor propagation model with nonlinear propagation rate and secondary propagation rate. We divide the total population into three groups, the ignorant, the spreader and the aware. The nonlinear incidence rate describes the psychological impact of certain serious rumors on social groups when the number of individuals spreading rumors becomes larger. The main contributions of this work are the development of a new rumor propagation model and some results of deterministic and stochastic analysis of the rumor propagation model. The results show the influence of nonlinear propagation rate and stochastic fluctuation on the dynamic behavior of the rumor propagation model by using Lyapunov function method and stochastic related knowledge. Numerical examples and simulation results are given to illustrate the results obtained.
基金supports by National Natural Science Foundation of China(Grant Nos.51874351 and 52078495)Excellent Postdoctoral Innovative Talents Project of Hunan Province,China(Grant No.2020RC2001).
文摘Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high convergence over the common numerical methods(e.g.finite element method,discrete element method,and particle manifold method)in dealing with three-dimensional and multicrack problems.However,current PFMs are mainly used to simulate mode-I(tensile)crack propagation but difficult to effectively simulate mode-II(shear)crack propagation.In this paper,a new mixed-mode PFM is established to simulate both mode-I and mode-II crack propagation of brittle rock by distinguishing the volumetric elastic strain energy and deviatoric elastic strain energy in the total elastic strain energy and considering the effect of compressive stress on mode-II crack propagation.Numerical solution method of the new mixed-mode PFM is proposed based on the staggered solution method with self-programmed subroutines UMAT and HETVAL of ABAQUS software.Three examples calculated using different PFMs as well as test results are presented for comparison.The results show that compared with the conventional PFM(which only simulates the tensile wing crack but not mode-II crack propagation)and the modified mixed-mode PFM(which has difficulty in simulating the shear anti-wing crack),the new mixed-mode PFM can successfully simulate the whole trajectories of mixed-mode crack propagation(including the tensile wing crack,shear secondary crack,and shear anti-wing crack)and mode-II crack propagation,which are close to the test results.It can be further extended to simulate multicrack propagation of anisotropic rock under multi-field coupling loads.
文摘Here a Gaussian Shell Model Array (GSMA) beam is used to investigate the propagation characteristics in the jet engine exhaust region. It has great significance to improve various optical systems for wide application in trapping cold atoms, creating gratings, and atmospheric optical communication. We calculate analytical formulas for the spectral density (SD) and the propagation factors M<sub>x</sub>2</sup> and M<sub>y</sub>2</sup> of a GSMA beam. The influence of inner scale of turbulence in the jet engine exhaust region on its power spectrum has been also analyzed. According to these results, the influence of turbulence in a jet engine exhaust on a GSMA beam has been reduced by changing the parameters of light source and turbulence. For example, it is an excellent tool for mitigation of the jet engine exhaust-induced anisotropy of turbulence to increase the source coherence length, the root-mean-squared (rms) beam width, the wavelength or reduce the outer scale of turbulence.