In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has beco...In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has become a major concern for businesses and end-users. One solution to ensure data security is encryption, where keys are central. There is therefore a need to find robusts key generation implementation that is effective, inexpensive and non-invasive for protecting and preventing data counterfeiting. In this paper, we use the theory of electromagnetic wave propagation to generate encryption keys.展开更多
In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), fact...In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.展开更多
The back propagation(BP)neural network method is widely used in bathymetry based on multispectral satellite imagery.However,the classical BP neural network method faces a potential problem because it easily falls into...The back propagation(BP)neural network method is widely used in bathymetry based on multispectral satellite imagery.However,the classical BP neural network method faces a potential problem because it easily falls into a local minimum,leading to model training failure.This study confirmed that the local minimum problem of the BP neural network method exists in the bathymetry field and cannot be ignored.Furthermore,to solve the local minimum problem of the BP neural network method,a bathymetry method based on a BP neural network and ensemble learning(BPEL)is proposed.First,the remote sensing imagery and training sample were used as input datasets,and the BP method was used as the base learner to produce multiple water depth inversion results.Then,a new ensemble strategy,namely the minimum outlying degree method,was proposed and used to integrate the water depth inversion results.Finally,an ensemble bathymetric map was acquired.Anda Reef,northeastern Jiuzhang Atoll,and Pingtan coastal zone were selected as test cases to validate the proposed method.Compared with the BP neural network method,the root-mean-square error and the average relative error of the BPEL method can reduce by 0.65–2.84 m and 16%–46%in the three test cases at most.The results showed that the proposed BPEL method could solve the local minimum problem of the BP neural network method and obtain highly robust and accurate bathymetric maps.展开更多
The traditional malware research is mainly based on its recognition and detection as a breakthrough point,without focusing on its propagation trends or predicting the subsequently infected nodes.The complexity of netw...The traditional malware research is mainly based on its recognition and detection as a breakthrough point,without focusing on its propagation trends or predicting the subsequently infected nodes.The complexity of network structure,diversity of network nodes,and sparsity of data all pose difficulties in predicting propagation.This paper proposes a malware propagation prediction model based on representation learning and Graph Convolutional Networks(GCN)to address the aforementioned problems.First,to solve the problem of the inaccuracy of infection intensity calculation caused by the sparsity of node interaction behavior data in the malware propagation network,a mechanism based on a tensor to mine the infection intensity among nodes is proposed to retain the network structure information.The influence of the relationship between nodes on the infection intensity is also analyzed.Second,given the diversity and complexity of the content and structure of infected and normal nodes in the network,considering the advantages of representation learning in data feature extraction,the corresponding representation learning method is adopted for the characteristics of infection intensity among nodes.This can efficiently calculate the relationship between entities and relationships in low dimensional space to achieve the goal of low dimensional,dense,and real-valued representation learning for the characteristics of propagation spatial data.We also design a new method,Tensor2vec,to learn the potential structural features of malware propagation.Finally,considering the convolution ability of GCN for non-Euclidean data,we propose a dynamic prediction model of malware propagation based on representation learning and GCN to solve the time effectiveness problem of the malware propagation carrier.The experimental results show that the proposed model can effectively predict the behaviors of the nodes in the network and discover the influence of different characteristics of nodes on the malware propagation situation.展开更多
AIM:To predict cutting formula of small incision lenticule extraction(SMILE)surgery and assist clinicians in identifying candidates by deep learning of back propagation(BP)neural network.METHODS:A prediction program w...AIM:To predict cutting formula of small incision lenticule extraction(SMILE)surgery and assist clinicians in identifying candidates by deep learning of back propagation(BP)neural network.METHODS:A prediction program was developed by a BP neural network.There were 13188 pieces of data selected as training validation.Another 840 eye samples from 425 patients were recruited for reverse verification of training results.Precision of prediction by BP neural network and lenticule thickness error between machine learning and the actual lenticule thickness in the patient data were measured.RESULTS:After training 2313 epochs,the predictive SMILE cutting formula BP neural network models performed best.The values of mean squared error and gradient are 0.248 and 4.23,respectively.The scatterplot with linear regression analysis showed that the regression coefficient in all samples is 0.99994.The final error accuracy of the BP neural network is-0.003791±0.4221102μm.CONCLUSION:With the help of the BP neural network,the program can calculate the lenticule thickness and residual stromal thickness of SMILE surgery accurately.Combined with corneal parameters and refraction of patients,the program can intelligently and conveniently integrate medical information to identify candidates for SMILE surgery.展开更多
The present progress of visual-based detection of the diseased area of a malady plays an essential part in the medicalfield.In that case,the image proces-sing is performed to improve the image data,wherein it inhibits ...The present progress of visual-based detection of the diseased area of a malady plays an essential part in the medicalfield.In that case,the image proces-sing is performed to improve the image data,wherein it inhibits unintended dis-tortion of image features or it enhances further processing in various applications andfields.This helps to show better results especially for diagnosing diseases.Of late the early prediction of cancer is necessary to prevent disease-causing pro-blems.This work is proposed to identify lung cancer using lung computed tomo-graphy(CT)scan images.It helps to identify cancer cells’affected areas.In the present work,the original input image from Lung Image Database Consortium(LIDC)typically suffers from noise problems.To overcome this,the Gaborfilter used for image processing is highly enhanced.In the next stage,the Spherical Iterative Refinement Clustering(SIRC)algorithm identifies cancer-suspected areas on the CT scan image.This approach can help radiologists and medical experts recognize cancer diseases and syndromes so that serious progress can be avoided in the early stages.These new methods help to remove unwanted por-tions of the CT image and better utilization the image.The subspace extraction of features approach is beneficial for evaluating lung cancer.This paper introduces a novel approach called Contiguous Cross Propagation Neural Network that tends to locate regions afflicted by lung cancer using CT scan pictures(CCPNN).By using the feature values from the fourth step of the procedure,the proposed CCPNN tends to categorize the lesion in the lung nodular site.The efficiency of the suggested CCPNN approach is evaluated using classification metrics such as recall(%),precision(%),F-measure(percent),and accuracy(%).Finally,the incorrect classification ratios are determined to compare the trained networks’effectiveness,through these parameters of CCPNN,it obtains the outstanding per-formance of 98.06%and it has provided the lowest false ratio of 1.8%.展开更多
This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga...This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome.展开更多
ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, th...ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, there is a noticeable variation in the achieved accuracies due to different network designs and implementations. Hence, researchers usually need to conduct several experimental trials before they can finalize the network design. This is a time consuming process which significantly reduces the effectiveness of using BPNNs and the final design may still not be optimal. Therefore, there is a need to see whether there are some common guidelines for effective design and implementation of BPNNs. With this aim in mind, this paper attempts to find and summarize the common guidelines suggested by different authors through literature review and discussion of the findings. To provide readers with background and contextual information, some ANN fundamentals are also introduced.展开更多
A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of...A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of the modal test data from a 'healthy' structure.The trained networks which are subsequently fed with vibration measurements from the same structurein different stages have the capability of recognizing the location and the content of structuraldamage and thereby can monitor the health of the structure. A modified back-propagation neuralnetwork is proposed to solve the two practical problems encountered by the traditionalback-propagation method, i.e., slow learning progress and convergence to a false local minimum.Various training algorithms, types of the input layer and numbers of the nodes in the input layerare considered. Numerical example results from a 5-degree-of-freedom spring-mass structure andanalyses on the experimental data of an actual 5-storey-steel-frame demonstrate thatneural-networks-based method is a robust procedure and a practical tool for the detection ofstructural damage, and that the modified back-propagation algorithm could improve the computationalefficiency as well as the accuracy of detection.展开更多
This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of ve...This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions.展开更多
Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and ...Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy.展开更多
With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consi...With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research.Therefore,it is crucial to accurately analyze the thickness of icing on wind turbine blades,which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas.This paper fully utilized the advantages of the support vector machine(SVM)and back-propagation neural network(BPNN),with the incorporation of particle swarm optimization(PSO)algorithms to optimize the parameters of the SVM.The paper proposes a hybrid assessment model of PSO-SVM and BPNN based on dynamic weighting rules.Three sets of icing data under a rotating working state of the wind turbine were used as examples for model verification.Based on a comparative analysis with other models,the results showed that the proposed model has better accuracy and stability in analyzing the icing on wind turbine blades.展开更多
This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation...This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method(DDM)and the Picard iterative method.The shale gas flow considers multiple transport mechanisms,and the flow in the fracture network is handled by the embedded discrete fracture model(EDFM).A series of numerical simulations are conducted to analyze the effects of the cluster number,stage spacing,stress difference coefficient,and natural fracture distribution on the stimulated fracture area,fractal dimension,and cumulative gas production,and their correlation coefficients are obtained.The results show that the most influential factors to the stimulated fracture area are the stress difference ratio,stage spacing,and natural fracture density,while those to the cumulative gas production are the stress difference ratio,natural fracture density,and cluster number.This indicates that the stress condition dominates the gas production,and employing intensive volume fracturing(by properly increasing the cluster number)is beneficial for improving the final cumulative gas production.展开更多
Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network. In this paper, we propose an effective and efficient algorithm, called Dominant Label Prop...Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network. In this paper, we propose an effective and efficient algorithm, called Dominant Label Propagation Algorithm(Abbreviated as DLPA), to detect communities in complex networks. The algorithm simulates a special voting process to detect overlapping and non-overlapping community structure in complex networks simultaneously. Our algorithm is very efficient, since its computational complexity is almost linear to the number of edges in the network. Experimental results on both real-world and synthetic networks show that our algorithm also possesses high accuracies on detecting community structure in networks.展开更多
In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of pub...In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of public opinion propagation into two layers:the original topic layer and the derived topic layer.Messages are transmitted separately by the SEIR model in the two topic layers,which are independent and interactive.The influence of the topic derivation rate on the propagation trend is established by solving for the equilibrium point and propagation threshold.Further,we establish the relationship between the original topic and the derived topic by simulation.This paper uses the Baidu index to demonstrate the correctness of the model.The relationship between the derived topic and the original topic is verified by adjusting the parameters by the control variable method.The results show that the proposed model is consistent with the propagation of actual public opinion.展开更多
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I...Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.展开更多
In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behav...In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behavior of individuals, and we define and quantify these factors. We consider these factors as characteristic attributes and use a Bayesian classifier to classify individuals. Considering the forwarding delay characteristics of information dissemination, we present a random time generation method that simulates the delay of information dissemination. Given time and other constraints, a user might not look at all the information that his/her friends published. Therefore, this paper proposes an algorithm to predict information visibility, i.e., it estimates the probability that an individual will see the information. Based on the classification of individual behavior and combined with our random time generation and information visibility prediction method, we propose an information dissemination model based on individual behavior. The model can be used to predict the scale and speed of information propagation. We use data sets from Sina Weibo to validate and analyze the prediction methods of the individual behavior and information dissemination model based on individual behavior. A previously proposedinformation dissemination model provides the foundation for a subsequent study on the evolution of the network and social network analysis. Predicting the scale and speed of information dissemination can also be used for public opinion monitoring.展开更多
Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community struc...Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community structure. Despite various subsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the basic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these consensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the edge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number of partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps, by computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter to adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an approach named the label propagation algorithm with consensus weight (LPAcw), and the experimental results showed that the LPAcw could enhance considerably both the stability and the accuracy of community partitions.展开更多
Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magni...Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magnified and propagated throughout these systems,resulting in the emergent behavior known as delay propagation.An understanding of delay propagation dynamics is pertinent to modern air traffic management.In this work,we present a complex network perspective of delay propagation dynamics.Specifically,we model air traffic scenarios using spatial–temporal networks with airports as the nodes.To establish the dynamic edges between the nodes,we develop a delay propagation method and apply it to a given set of air traffic schedules.Based on the constructed spatial-temporal networks,we suggest three metrics-magnitude,severity,and speed-to gauge delay propagation dynamics.To validate the effectiveness of the proposed method,we carry out case studies on domestic flights in the Southeastern Asia region(SAR)and the United States.Experiments demonstrate that the propagation magnitude in terms of the number of flights affected by delay propagation and the amount of propagated delays for the US traffic are respectively five and ten times those of the SAR.Experiments further reveal that the propagation speed for US traffic is eight times faster than that of the SAR.The delay propagation dynamics reveal that about six hub airports in the SAR have significant propagated delays,while the situation in the United States is considerably worse,with a corresponding number of around 16.This work provides a potent tool for tracing the evolution of air traffic delays.展开更多
文摘In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has become a major concern for businesses and end-users. One solution to ensure data security is encryption, where keys are central. There is therefore a need to find robusts key generation implementation that is effective, inexpensive and non-invasive for protecting and preventing data counterfeiting. In this paper, we use the theory of electromagnetic wave propagation to generate encryption keys.
基金supported by the Natural Science Foundation of China under (Nos. 42172293, 4190020747, and 41472268)。
文摘In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.
基金The National Natural Science Foundation of China under contract No.42001401the China Postdoctoral Science Foundation under contract No.2020M671431+1 种基金the Fundamental Research Funds for the Central Universities under contract No.0209-14380096the Guangxi Innovative Development Grand Grant under contract No.2018AA13005.
文摘The back propagation(BP)neural network method is widely used in bathymetry based on multispectral satellite imagery.However,the classical BP neural network method faces a potential problem because it easily falls into a local minimum,leading to model training failure.This study confirmed that the local minimum problem of the BP neural network method exists in the bathymetry field and cannot be ignored.Furthermore,to solve the local minimum problem of the BP neural network method,a bathymetry method based on a BP neural network and ensemble learning(BPEL)is proposed.First,the remote sensing imagery and training sample were used as input datasets,and the BP method was used as the base learner to produce multiple water depth inversion results.Then,a new ensemble strategy,namely the minimum outlying degree method,was proposed and used to integrate the water depth inversion results.Finally,an ensemble bathymetric map was acquired.Anda Reef,northeastern Jiuzhang Atoll,and Pingtan coastal zone were selected as test cases to validate the proposed method.Compared with the BP neural network method,the root-mean-square error and the average relative error of the BPEL method can reduce by 0.65–2.84 m and 16%–46%in the three test cases at most.The results showed that the proposed BPEL method could solve the local minimum problem of the BP neural network method and obtain highly robust and accurate bathymetric maps.
基金This research is partially supported by the National Natural Science Foundation of China(Grant No.61772098)Chongqing Technology Innovation and Application Development Project(Grant No.cstc2020jscxmsxmX0150)+2 种基金Chongqing Science and Technology Innovation Leading Talent Support Program(CSTCCXLJRC201908)Basic and Advanced Research Projects of CSTC(No.cstc2019jcyj-zdxmX0008)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K201900605).
文摘The traditional malware research is mainly based on its recognition and detection as a breakthrough point,without focusing on its propagation trends or predicting the subsequently infected nodes.The complexity of network structure,diversity of network nodes,and sparsity of data all pose difficulties in predicting propagation.This paper proposes a malware propagation prediction model based on representation learning and Graph Convolutional Networks(GCN)to address the aforementioned problems.First,to solve the problem of the inaccuracy of infection intensity calculation caused by the sparsity of node interaction behavior data in the malware propagation network,a mechanism based on a tensor to mine the infection intensity among nodes is proposed to retain the network structure information.The influence of the relationship between nodes on the infection intensity is also analyzed.Second,given the diversity and complexity of the content and structure of infected and normal nodes in the network,considering the advantages of representation learning in data feature extraction,the corresponding representation learning method is adopted for the characteristics of infection intensity among nodes.This can efficiently calculate the relationship between entities and relationships in low dimensional space to achieve the goal of low dimensional,dense,and real-valued representation learning for the characteristics of propagation spatial data.We also design a new method,Tensor2vec,to learn the potential structural features of malware propagation.Finally,considering the convolution ability of GCN for non-Euclidean data,we propose a dynamic prediction model of malware propagation based on representation learning and GCN to solve the time effectiveness problem of the malware propagation carrier.The experimental results show that the proposed model can effectively predict the behaviors of the nodes in the network and discover the influence of different characteristics of nodes on the malware propagation situation.
基金Supported by the National Natural Science Foundation of China(No.82271100)Jiangsu Province Science and Technology Support Plan Project(No.BE2022805).
文摘AIM:To predict cutting formula of small incision lenticule extraction(SMILE)surgery and assist clinicians in identifying candidates by deep learning of back propagation(BP)neural network.METHODS:A prediction program was developed by a BP neural network.There were 13188 pieces of data selected as training validation.Another 840 eye samples from 425 patients were recruited for reverse verification of training results.Precision of prediction by BP neural network and lenticule thickness error between machine learning and the actual lenticule thickness in the patient data were measured.RESULTS:After training 2313 epochs,the predictive SMILE cutting formula BP neural network models performed best.The values of mean squared error and gradient are 0.248 and 4.23,respectively.The scatterplot with linear regression analysis showed that the regression coefficient in all samples is 0.99994.The final error accuracy of the BP neural network is-0.003791±0.4221102μm.CONCLUSION:With the help of the BP neural network,the program can calculate the lenticule thickness and residual stromal thickness of SMILE surgery accurately.Combined with corneal parameters and refraction of patients,the program can intelligently and conveniently integrate medical information to identify candidates for SMILE surgery.
文摘The present progress of visual-based detection of the diseased area of a malady plays an essential part in the medicalfield.In that case,the image proces-sing is performed to improve the image data,wherein it inhibits unintended dis-tortion of image features or it enhances further processing in various applications andfields.This helps to show better results especially for diagnosing diseases.Of late the early prediction of cancer is necessary to prevent disease-causing pro-blems.This work is proposed to identify lung cancer using lung computed tomo-graphy(CT)scan images.It helps to identify cancer cells’affected areas.In the present work,the original input image from Lung Image Database Consortium(LIDC)typically suffers from noise problems.To overcome this,the Gaborfilter used for image processing is highly enhanced.In the next stage,the Spherical Iterative Refinement Clustering(SIRC)algorithm identifies cancer-suspected areas on the CT scan image.This approach can help radiologists and medical experts recognize cancer diseases and syndromes so that serious progress can be avoided in the early stages.These new methods help to remove unwanted por-tions of the CT image and better utilization the image.The subspace extraction of features approach is beneficial for evaluating lung cancer.This paper introduces a novel approach called Contiguous Cross Propagation Neural Network that tends to locate regions afflicted by lung cancer using CT scan pictures(CCPNN).By using the feature values from the fourth step of the procedure,the proposed CCPNN tends to categorize the lesion in the lung nodular site.The efficiency of the suggested CCPNN approach is evaluated using classification metrics such as recall(%),precision(%),F-measure(percent),and accuracy(%).Finally,the incorrect classification ratios are determined to compare the trained networks’effectiveness,through these parameters of CCPNN,it obtains the outstanding per-formance of 98.06%and it has provided the lowest false ratio of 1.8%.
基金supported by the National Natural Science Foundation of China Grant No.30771858Jiangsu Provincial Natural Science Foundation Grant No.BK2007229Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome.
文摘ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, there is a noticeable variation in the achieved accuracies due to different network designs and implementations. Hence, researchers usually need to conduct several experimental trials before they can finalize the network design. This is a time consuming process which significantly reduces the effectiveness of using BPNNs and the final design may still not be optimal. Therefore, there is a need to see whether there are some common guidelines for effective design and implementation of BPNNs. With this aim in mind, this paper attempts to find and summarize the common guidelines suggested by different authors through literature review and discussion of the findings. To provide readers with background and contextual information, some ANN fundamentals are also introduced.
基金the National Natural Science Foundation of China (No.59908003)the Natural Science Foundation of Hubei Province (No.99J035)
文摘A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of the modal test data from a 'healthy' structure.The trained networks which are subsequently fed with vibration measurements from the same structurein different stages have the capability of recognizing the location and the content of structuraldamage and thereby can monitor the health of the structure. A modified back-propagation neuralnetwork is proposed to solve the two practical problems encountered by the traditionalback-propagation method, i.e., slow learning progress and convergence to a false local minimum.Various training algorithms, types of the input layer and numbers of the nodes in the input layerare considered. Numerical example results from a 5-degree-of-freedom spring-mass structure andanalyses on the experimental data of an actual 5-storey-steel-frame demonstrate thatneural-networks-based method is a robust procedure and a practical tool for the detection ofstructural damage, and that the modified back-propagation algorithm could improve the computationalefficiency as well as the accuracy of detection.
文摘This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions.
基金Funded by National Natural Science Foundation of China(Nos.51502212,51672194 and 51472184)Hubei Province Natural Science Foundation of China(No.2018CFB760)+1 种基金Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(No.T201602)Key Program of Natural Science Foundation of Hubei Province(No.2017CFA004)
文摘Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy.
基金supported by the Natural Science Foundation of China(Project No.51665052).
文摘With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research.Therefore,it is crucial to accurately analyze the thickness of icing on wind turbine blades,which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas.This paper fully utilized the advantages of the support vector machine(SVM)and back-propagation neural network(BPNN),with the incorporation of particle swarm optimization(PSO)algorithms to optimize the parameters of the SVM.The paper proposes a hybrid assessment model of PSO-SVM and BPNN based on dynamic weighting rules.Three sets of icing data under a rotating working state of the wind turbine were used as examples for model verification.Based on a comparative analysis with other models,the results showed that the proposed model has better accuracy and stability in analyzing the icing on wind turbine blades.
基金supported by the National Natural Science Foundation of China(Nos.52274038,5203401042174143)+1 种基金the Taishan Scholars Project(No.tsqnz20221140)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)of China(No.PLN2020-5)。
文摘This paper presents an integrated study from fracture propagation modeling to gas flow modeling and a correlation analysis to explore the key controlling factors of intensive volume fracturing.The fracture propagation model takes into account the interaction between hydraulic fracture and natural fracture by means of the displacement discontinuity method(DDM)and the Picard iterative method.The shale gas flow considers multiple transport mechanisms,and the flow in the fracture network is handled by the embedded discrete fracture model(EDFM).A series of numerical simulations are conducted to analyze the effects of the cluster number,stage spacing,stress difference coefficient,and natural fracture distribution on the stimulated fracture area,fractal dimension,and cumulative gas production,and their correlation coefficients are obtained.The results show that the most influential factors to the stimulated fracture area are the stress difference ratio,stage spacing,and natural fracture density,while those to the cumulative gas production are the stress difference ratio,natural fracture density,and cluster number.This indicates that the stress condition dominates the gas production,and employing intensive volume fracturing(by properly increasing the cluster number)is beneficial for improving the final cumulative gas production.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61173093 and 61202182)the Postdoctoral Science Foundation of China(Grant No.2012 M521776)+2 种基金the Fundamental Research Funds for the Central Universities of Chinathe Postdoctoral Science Foundation of Shannxi Province,Chinathe Natural Science Basic Research Plan of Shaanxi Province,China(Grant Nos.2013JM8019 and 2014JQ8359)
文摘Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network. In this paper, we propose an effective and efficient algorithm, called Dominant Label Propagation Algorithm(Abbreviated as DLPA), to detect communities in complex networks. The algorithm simulates a special voting process to detect overlapping and non-overlapping community structure in complex networks simultaneously. Our algorithm is very efficient, since its computational complexity is almost linear to the number of edges in the network. Experimental results on both real-world and synthetic networks show that our algorithm also possesses high accuracies on detecting community structure in networks.
基金in part by the National Natural Science Foundation of China(No.51334003).
文摘In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of public opinion propagation into two layers:the original topic layer and the derived topic layer.Messages are transmitted separately by the SEIR model in the two topic layers,which are independent and interactive.The influence of the topic derivation rate on the propagation trend is established by solving for the equilibrium point and propagation threshold.Further,we establish the relationship between the original topic and the derived topic by simulation.This paper uses the Baidu index to demonstrate the correctness of the model.The relationship between the derived topic and the original topic is verified by adjusting the parameters by the control variable method.The results show that the proposed model is consistent with the propagation of actual public opinion.
基金National Natural Science Foundation of China(No. 60474021)
文摘Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.
基金sponsored by the National Natural Science Foundation of China under grant number No. 61100008 the Natural Science Foundation of Heilongjiang Province of China under Grant No. LC2016024
文摘In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behavior of individuals, and we define and quantify these factors. We consider these factors as characteristic attributes and use a Bayesian classifier to classify individuals. Considering the forwarding delay characteristics of information dissemination, we present a random time generation method that simulates the delay of information dissemination. Given time and other constraints, a user might not look at all the information that his/her friends published. Therefore, this paper proposes an algorithm to predict information visibility, i.e., it estimates the probability that an individual will see the information. Based on the classification of individual behavior and combined with our random time generation and information visibility prediction method, we propose an information dissemination model based on individual behavior. The model can be used to predict the scale and speed of information propagation. We use data sets from Sina Weibo to validate and analyze the prediction methods of the individual behavior and information dissemination model based on individual behavior. A previously proposedinformation dissemination model provides the foundation for a subsequent study on the evolution of the network and social network analysis. Predicting the scale and speed of information dissemination can also be used for public opinion monitoring.
基金supported by the National Natural Science Foundation of China(Grant No.61370073)the China Scholarship Council,China(Grant No.201306070037)
文摘Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community structure. Despite various subsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the basic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these consensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the edge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number of partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps, by computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter to adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an approach named the label propagation algorithm with consensus weight (LPAcw), and the experimental results showed that the LPAcw could enhance considerably both the stability and the accuracy of community partitions.
基金This work was supported by SUG Research Grant M4082126.050 by the School of Mechanical and Aerospace Engineering(MAE),Nanyang Technological University(NTU),SingaporeNTU-CAAS Research Grant M4062429.052 by the ATM Research Institute,School of MAE,NTU,Singapore.
文摘Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magnified and propagated throughout these systems,resulting in the emergent behavior known as delay propagation.An understanding of delay propagation dynamics is pertinent to modern air traffic management.In this work,we present a complex network perspective of delay propagation dynamics.Specifically,we model air traffic scenarios using spatial–temporal networks with airports as the nodes.To establish the dynamic edges between the nodes,we develop a delay propagation method and apply it to a given set of air traffic schedules.Based on the constructed spatial-temporal networks,we suggest three metrics-magnitude,severity,and speed-to gauge delay propagation dynamics.To validate the effectiveness of the proposed method,we carry out case studies on domestic flights in the Southeastern Asia region(SAR)and the United States.Experiments demonstrate that the propagation magnitude in terms of the number of flights affected by delay propagation and the amount of propagated delays for the US traffic are respectively five and ten times those of the SAR.Experiments further reveal that the propagation speed for US traffic is eight times faster than that of the SAR.The delay propagation dynamics reveal that about six hub airports in the SAR have significant propagated delays,while the situation in the United States is considerably worse,with a corresponding number of around 16.This work provides a potent tool for tracing the evolution of air traffic delays.