As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introd...As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introduces a new design of for steam feeding the water pump of an air-cooled unit using the back-pressure steam turbine as the prime motor. Using variable condition analysis on a 600 MW direct air-cooled unit, and with consideration of the effect on the ambient conditions, the feasibility, economy, and adaptability of the design are verified.展开更多
In this paper, a new energy-efficient and reliable routing protocol is introduced for WSNs including a stochastic traffic generation model and a wakeup/sleep mechanism. Our objective is to improve the longevity of the...In this paper, a new energy-efficient and reliable routing protocol is introduced for WSNs including a stochastic traffic generation model and a wakeup/sleep mechanism. Our objective is to improve the longevity of the WSNs by energy balancing but providing reliable packet transfer to the Base Station at the same time. The proposed protocol is based on the principle of the back-pressure method and besides the difference of backlogs, in order to optimize energy consumption, we use a cost function related to an entropy like function defined over the residual energies of the nodes. In the case of two-hop routing the optimal relay node is selected as the one which has maximum backlog difference and keeps the distribution of residual energy as close to uniform as possible where the uniformity is measured by the change of the entropy of the residual energy of the nodes. The protocol assumes Rayleigh fading model. Simulation results show that the proposed algorithm significantly improves the performance of traditional back-pressure protocol with respect to energy efficiency, E2E delay and throughput, respectively.展开更多
With rapid advancements in Infra-Red (IR) detection techniques, the range from where the IR-guided missiles are able to lock the target aircraft has increased. To avoid the detection and tracking by modern IR-guided m...With rapid advancements in Infra-Red (IR) detection techniques, the range from where the IR-guided missiles are able to lock the target aircraft has increased. To avoid the detection and tracking by modern IR-guided missiles, the aircraft and helicopters also demand progress in its stealth techniques. Hence, study of Infra-Red Signature Suppression (IRSS) systems in aircraft and helicopters has become vital even in design stage. Optical blocking (masking) is one of the effective IRSS techniques used to block the Line- Of-Sight (LOS) of the hot engine parts of the exhaust geometry. This paper reviews the various patents on IR signature suppression systems based on the optical blocking method or a combination of IRSS techniques. The performance penalties generated due to installation of various IRSS methods in aircraft and helicopters are also discussed.展开更多
Casing parts are regarded as key components of aero-engines.Most casing parts are attached to convex structures of diferent shapes,whose heights range from hundreds of microns to tens of millimeters.Using profling blo...Casing parts are regarded as key components of aero-engines.Most casing parts are attached to convex structures of diferent shapes,whose heights range from hundreds of microns to tens of millimeters.Using profling blocky electrodes for electrochemical machining(ECM)of casing parts is a commonly adopted method,especially when highly convex structures.However,with an increase in the convex structure height,the fow felds of the machining areas become more complex,and short circuits may occur at any time.In this study,a method to improve the fow feld characteristics within a machining area by adjusting the backwater pressure is proposed and validated through simulation and experiment analyses.The simulation results demonstrated that the back-pressure method can signifcantly improve the uniformity of the fow feld around the convex structure compared with the extraction and open outlet modes.Subsequently,the back-pressure value was optimized at 0.5 MPa according to the simulation results.The experimental results showed that using the optimized back-pressure parameters,the cathode feed-rate increased from 0.6 to 0.7 mm/min,and a 16.1 mm tall convex structure was successfully machined.This indicates that the back-pressure method is suitable and efective for electrochemical machining of highly convex structures with blocky electrodes.In this study,we propose a method to improve the electrochemical machining stability of a convex structure on a casing surface using backwater pressure,which has achieved remarkable results.展开更多
文摘As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introduces a new design of for steam feeding the water pump of an air-cooled unit using the back-pressure steam turbine as the prime motor. Using variable condition analysis on a 600 MW direct air-cooled unit, and with consideration of the effect on the ambient conditions, the feasibility, economy, and adaptability of the design are verified.
文摘In this paper, a new energy-efficient and reliable routing protocol is introduced for WSNs including a stochastic traffic generation model and a wakeup/sleep mechanism. Our objective is to improve the longevity of the WSNs by energy balancing but providing reliable packet transfer to the Base Station at the same time. The proposed protocol is based on the principle of the back-pressure method and besides the difference of backlogs, in order to optimize energy consumption, we use a cost function related to an entropy like function defined over the residual energies of the nodes. In the case of two-hop routing the optimal relay node is selected as the one which has maximum backlog difference and keeps the distribution of residual energy as close to uniform as possible where the uniformity is measured by the change of the entropy of the residual energy of the nodes. The protocol assumes Rayleigh fading model. Simulation results show that the proposed algorithm significantly improves the performance of traditional back-pressure protocol with respect to energy efficiency, E2E delay and throughput, respectively.
基金the Indian Institute of Technology Bombay’s Post-Doctoral Research Program, vide appointment no. AO/Admn1/33/2018 dated 10.Aug’2018 for providing funding
文摘With rapid advancements in Infra-Red (IR) detection techniques, the range from where the IR-guided missiles are able to lock the target aircraft has increased. To avoid the detection and tracking by modern IR-guided missiles, the aircraft and helicopters also demand progress in its stealth techniques. Hence, study of Infra-Red Signature Suppression (IRSS) systems in aircraft and helicopters has become vital even in design stage. Optical blocking (masking) is one of the effective IRSS techniques used to block the Line- Of-Sight (LOS) of the hot engine parts of the exhaust geometry. This paper reviews the various patents on IR signature suppression systems based on the optical blocking method or a combination of IRSS techniques. The performance penalties generated due to installation of various IRSS methods in aircraft and helicopters are also discussed.
基金Supported by National Natural Science Foundation of China(Grant No.51775484)China Postdoctoral Science Foundation(Grant No.2020M670791).
文摘Casing parts are regarded as key components of aero-engines.Most casing parts are attached to convex structures of diferent shapes,whose heights range from hundreds of microns to tens of millimeters.Using profling blocky electrodes for electrochemical machining(ECM)of casing parts is a commonly adopted method,especially when highly convex structures.However,with an increase in the convex structure height,the fow felds of the machining areas become more complex,and short circuits may occur at any time.In this study,a method to improve the fow feld characteristics within a machining area by adjusting the backwater pressure is proposed and validated through simulation and experiment analyses.The simulation results demonstrated that the back-pressure method can signifcantly improve the uniformity of the fow feld around the convex structure compared with the extraction and open outlet modes.Subsequently,the back-pressure value was optimized at 0.5 MPa according to the simulation results.The experimental results showed that using the optimized back-pressure parameters,the cathode feed-rate increased from 0.6 to 0.7 mm/min,and a 16.1 mm tall convex structure was successfully machined.This indicates that the back-pressure method is suitable and efective for electrochemical machining of highly convex structures with blocky electrodes.In this study,we propose a method to improve the electrochemical machining stability of a convex structure on a casing surface using backwater pressure,which has achieved remarkable results.