期刊文献+
共找到7,280篇文章
< 1 2 250 >
每页显示 20 50 100
改进SSA优化BP神经网络的变压器故障诊断
1
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 bp神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
下载PDF
BP神经网络回归预测模型的改进
2
作者 何大四 金璐琪 +1 位作者 张祖铭 赵强强 《机械工程与自动化》 2025年第1期224-226,共3页
为了优化BP神经网络,提出了一种优化BP神经网络的流程。首先,判断各影响因素之间的自相关性,如果各影响因素满足自相关评价指标,则可以使用BP神经网络进行回归训练;其次,改变BP神经网络的隐藏节点数、学习效率、训练误差和训练次数等影... 为了优化BP神经网络,提出了一种优化BP神经网络的流程。首先,判断各影响因素之间的自相关性,如果各影响因素满足自相关评价指标,则可以使用BP神经网络进行回归训练;其次,改变BP神经网络的隐藏节点数、学习效率、训练误差和训练次数等影响因素;最后,加入遗传算法或者粒子群算法与BP神经网络组成混合算法,以提高BP神经网络的训练精度。 展开更多
关键词 bp神经网络 隐藏节点 混合算法 回归预测 自相关性
下载PDF
BP神经网络在离心压缩机叶轮优化中的应用
3
作者 董志强 于根亮 +1 位作者 董逸飞 陈义恒 《汽车实用技术》 2025年第2期56-62,共7页
为了提高离心式压缩机叶轮设计效率并降低计算资源消耗,针对遗传算法优化中计算量大、效率低的问题,提出基于改进粒子群优化算法(IPSO)优化BP神经网络的方法。通过少量计算流体动力学(CFD)仿真样本,训练BP神经网络建立效率与叶轮参数的... 为了提高离心式压缩机叶轮设计效率并降低计算资源消耗,针对遗传算法优化中计算量大、效率低的问题,提出基于改进粒子群优化算法(IPSO)优化BP神经网络的方法。通过少量计算流体动力学(CFD)仿真样本,训练BP神经网络建立效率与叶轮参数的映射关系,结合IPSO优化其参数,同时利用遗传算法(GA)确定叶轮的最佳性能参数。研究表明,改进的IPSO算法通过增强粒子群的动态适应性和全局搜索能力,提高了BP神经网络的预测精度和优化效率。优化后的叶轮等熵效率提高1.34%,多变效率提高1.04%,流量增加10.4%。该方法显著提升了离心式压缩机叶轮的设计效率和性能,为复杂流体机械的优化设计提供了新思路。 展开更多
关键词 离心式压缩机 CFD仿真 叶轮参数优化 bp神经网络 遗传算法
下载PDF
GA-BP模型在HSS模型参数取值中的应用
4
作者 张杰 马杰 +2 位作者 陈啸海 钟鹏 王营营 《城市道桥与防洪》 2025年第1期229-235,共7页
小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小... 小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小应变参数的预测方法,采用经过遗传算法优化的BP神经网络模型,即GA-BP神经网络模型,首先根据预设的小应变参数水平经过数值模拟计算得到49组位移数据,然后将得到的数据用于GA-BP神经网络的训练,待GA-BP神经网络的预测误差达到要求之后,再使用实际的位移数据反演得到小应变参数,最后基于预测得到的小应变参数进行数值模拟。结果显示,GA-BP神经网络模型预测的小应变参数在基坑围护结构最大水平位移和地表最大沉降计算方面表现良好,可以应用于实际工程。 展开更多
关键词 岩土工程 遗传算法 HSS模型 bp神经网络 小应变参数 参数反演
下载PDF
基于改进BP神经网络的烟草收获机械故障诊断研究 被引量:1
5
作者 戴欧阳 胡洪林 《农机化研究》 北大核心 2025年第4期70-76,共7页
烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提... 烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障。随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提高烟草收获机械工作效率的重要技术。目前,主要以BP神经网络模型应用较为广泛,但在模型构建中预测效率低、鲁棒性强。针对以上问题,提出一种改进BP神经网络模型,以烟草收获机械中的齿轮故障诊断为研究对象,构建基于GA-BP神经网络模型的烟草收获机械齿轮故障诊断模型,并通过选取齿轮磨损、胶合、裂纹、断齿和正常齿轮的信号进行试验验证。结果表明:改进后的BP神经网络模型MAPE仅为0.87%,RMSE为1.12,MAE为0.92,MSE为1.19,满足烟草收获生产的实际需要,在模型算法与计算速度方面都得到了很大的提高。 展开更多
关键词 烟草收获 机械故障 遗传算法 bp神经网络 优化模型
下载PDF
基于改进WOA-BP神经网络的电气火灾预警算法
6
作者 颜磊 王国兵 +2 位作者 翁旭峰 刘雪莹 江友华 《电子设计工程》 2025年第1期21-26,共6页
电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和... 电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和线缆温度作为神经网络的输入特征,结合上述改进方法对权值和阈值进行优化。优化后的参数作为初始参数进行模型训练,用于输出电气火灾的概率。采用电气柜中回路数据进行试验,将预测概率与剩余电流异常持续时间进行模糊化处理,得出火灾决策。研究结果表明,所提模型相关系数达到0.97,相较于传统方法提高了0.08,具有更高的准确性和可靠性。 展开更多
关键词 电气火灾预警 鲸鱼优化算法 bp神经网络 模糊化
下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究
7
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 bp神经网络模型 核主成分分析(KPCA) 总磷浓度
下载PDF
基于PSO-BP模糊PID的变距取苗机构控制系统设计
8
作者 李润泽 王卫兵 李小军 《农机化研究》 北大核心 2025年第2期9-18,共10页
为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。... 为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。同时,为实现变距取苗机构的精确控制,提出了一种基于PSO-BP的模糊PID算法以提高控制精度,介绍了系统的结构与工作原理,并通过选型计算与分析建模建立了控制系统的数学模型。针对传统PID控制器稳定性差、响应速度慢等不足之处,利用PSO-BP模糊PID对控制器的参数进行在线调整,以满足控制过程中对参数的不同需求。仿真结果与试验数据的分析表明:在参数相同条件下,基于PSO-BP模糊PID控制系统系统稳定性更好、响应速度更快,具有良好的鲁棒性,提升取苗成功率的同时降低了基质损伤率,能够满足变距取苗机构高精度快速稳定控制的需求。 展开更多
关键词 变距取苗机构 PSO-bp神经网络 模糊PID算法 控制系统
下载PDF
基于GA-BP神经网络岩石单轴抗压强度预测模型研究
9
作者 张奥宇 杨科 +1 位作者 池小楼 张杰 《煤》 2025年第1期6-10,17,共6页
为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-B... 为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-BP神经网络对煤矿砂岩与泥岩单轴抗压强度进行了预测,并与传统的BP神经网络和非线性回归分析法进行了比较。研究结果表明,GA-BP神经网络预测模型在预测砂岩和泥岩单轴抗压强度与弹性模量间关系上具有较高的精度和泛化能力,能够有效地解决传统BP神经网络的局部最优和过拟合问题,相较于非线性回归分析,拥有更强的非线性关系建模能力,是一种适用于砂岩与泥岩单轴抗压强度预测的有效方法。 展开更多
关键词 岩石力学参数 非线性回归 bp神经网络 遗传算法 预测模型
下载PDF
A Biological Plausible Spatial Recognition Model in Robots Based on Error Back-Propagation Algorithm 被引量:1
10
作者 Naigong Yu Huanzhao Chent Lin Wang Xiaogang Ruan 《计算机科学与技术汇刊(中英文版)》 2013年第3期31-39,共9页
关键词 摘要 编辑部 编辑工作 读者
下载PDF
滑坡位移CEEMD-CIWOA-BP预测模型
11
作者 余国强 侯克鹏 孙华芬 《有色金属(矿山部分)》 2025年第1期106-114,142,共10页
为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量... 为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA-BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量,将其重构为滑坡趋势项及周期项位移;然后引入Cubic混沌映射及惯性权重因子对WOA算法优化,利用优化的WOA算法对BP神经网络模型的连接权重及偏置项进行赋值;考虑到降雨及库水位对滑坡位移的时滞效应,利用Granger因果检验法确定降雨及库水位与周期位移的因果关系并引用MIC法确定时滞期数,使用CIWOA-BP模型分别对周期位移进行预测;最后,将各分量结果叠加得到滑坡位移累计预测值,对模型的预测精度进行评价。结果显示,本文提出的CEEMD-CIWOA-BP模型的性能优于其他模型,验证了所建模型的可行性。本文提出的模型能为滑坡灾害预警预报提供一定的参考。 展开更多
关键词 滑坡位移 互补集合经验模态分解 bp神经网络 改进鲸鱼优化算法 时间序列
下载PDF
基于PSO与BP神经网络的磁共振成像设备故障诊断研究
12
作者 方佩玺 张姚昕 赵媛 《机械设计与制造工程》 2025年第1期85-90,共6页
针对磁共振成像设备故障诊断准确性和效率低的问题,提出一种基于粒子群优化算法与反向传播神经网络结合邓普斯特-谢弗证据理论的故障诊断模型。该模型通过粒子群优化算法优化反向传播神经网络的参数,并结合邓普斯特-谢弗证据理论融合多... 针对磁共振成像设备故障诊断准确性和效率低的问题,提出一种基于粒子群优化算法与反向传播神经网络结合邓普斯特-谢弗证据理论的故障诊断模型。该模型通过粒子群优化算法优化反向传播神经网络的参数,并结合邓普斯特-谢弗证据理论融合多传感器数据。实验结果表明,10种故障类型下所提模型的故障检测正确率为100%,对10种不同类型故障的平均检测准确率达96.2%,单样本检测耗时为17.5 ms。 展开更多
关键词 粒子群优化算法 反向传播神经网络 磁共振成像设备 故障诊断 邓普斯特-谢弗证据理论
下载PDF
基于GA-BP神经网络的地源热泵空调负荷预测及实例验证
13
作者 张学泽 秦景 +3 位作者 陈晓飞 杨子劼 孙兴国 刘喆 《仪表技术》 2025年第1期57-60,共4页
针对当前建筑供热负荷预测模型预测精度低和能源利用率不高的问题,以及BP神经网络负荷预测方法存在的预测精度不高、易陷入局部最优等缺陷,采用GA-BP神经网络进行负荷预测。首先建立GA-BP神经网络模型,然后对采集到的数据进行处理,最后... 针对当前建筑供热负荷预测模型预测精度低和能源利用率不高的问题,以及BP神经网络负荷预测方法存在的预测精度不高、易陷入局部最优等缺陷,采用GA-BP神经网络进行负荷预测。首先建立GA-BP神经网络模型,然后对采集到的数据进行处理,最后将该模型应用于北京某办公建筑的集中供热系统。验证数据显示,GA-BP神经网络负荷预测模型的总体平均相对误差为6.9%,预测的相对误差绝对值范围在6%~8%之间,显示出更高的预测精度。应用效果表明,GA-BP神经网络负荷预测模型相较于BP神经网络模型,能够更为精确地预测未来24h的逐时负荷。 展开更多
关键词 地源热泵系统 遗传算法 bp神经网络 逐时负荷预测 用户侧
下载PDF
基于GA-BP算法的汽车前端框架翘曲变形优化及验证
14
作者 林煌旭 孔选 +3 位作者 陆将男 周华江 朱国常 朱浩伟 《工程塑料应用》 北大核心 2025年第1期90-97,共8页
针对车用前端框架格栅插槽处翘曲变形大造成整车装配精度差的问题,首先通过Moldflow软件建立有限元模型分析零件初始翘曲变形量及影响参数。选定模具温度、熔体温度、保压压力、保压时间、冷却时间作为设计因素,通过正交试验表得到工艺... 针对车用前端框架格栅插槽处翘曲变形大造成整车装配精度差的问题,首先通过Moldflow软件建立有限元模型分析零件初始翘曲变形量及影响参数。选定模具温度、熔体温度、保压压力、保压时间、冷却时间作为设计因素,通过正交试验表得到工艺参数与翘曲变形量之间的映射关系并建立单目标非线性优化模型。利用GA遗传算法改良的BP神经网络进一步描述优化模型的非线性函数关系,以适应度曲线迭代收敛预测得到最佳的BP网络模型预测工艺参数分别为:模具温度60℃、熔体温度265℃、保压压力55MPa、保压时间4s、冷却时间35s,最大翘曲变形量为1.191mm。最后将最优工艺参数导入Moldflow中模拟得到最大翘曲变形量为1.33mm,较优化前初始翘曲量2.423 mm降低了45.1%。经GA-BP算法优化后的工艺参数应用于生产制造过程,前端框架注塑件偏差测量结果表明,实际测量值与优化后Moldflow模拟值拟合度较高,两者平均偏差为0.28mm,满足整车装配要求,证实了GA-BP神经网络预测模型用于优化前端框架翘曲变形的可行性。 展开更多
关键词 汽车前端框架 翘曲变形 MOLDFLOW 正交试验法 GA遗传算法 bp神经网络模型
下载PDF
基于GA-BP神经网络的退役动力锂电池健康状态快速分选模型研究
15
作者 原佳林 刘得星 《科技创新与应用》 2025年第3期29-32,共4页
针对退役车用动力锂离子电池健康状态评估问题,分析得到内阻、温度、充电和放电倍率4大影响因素;然后构建BP神经网络模型,并利用已有的实验数据验证其预测准确率为89.48%,模型平均绝对百分比误差MAPE为10.52%;进一步引入GA遗传算法搭建G... 针对退役车用动力锂离子电池健康状态评估问题,分析得到内阻、温度、充电和放电倍率4大影响因素;然后构建BP神经网络模型,并利用已有的实验数据验证其预测准确率为89.48%,模型平均绝对百分比误差MAPE为10.52%;进一步引入GA遗传算法搭建GA-BP神经网络模型,预测准确率提高到97.72%,模型平均绝对百分比误差MAPE降低到2.28%,均优于标准BP神经网络。结果表明,采用GA遗传算法优化BP神经网络的权值和阈值可以改善模型精度,提高该模型的预测准确率。 展开更多
关键词 退役动力锂电池 梯次利用 GA-bp神经网络 遗传算法 锂电池SOH
下载PDF
基于优化BPNN的FPGA内嵌高速接口总抖动预测方法
16
作者 叶翔宇 林晓会 +1 位作者 丁江乔 解维坤 《电子科技》 2025年第2期70-77,共8页
针对ATE(Automated Test Equipment)无法直接测试出FPGA(Field-Programmable Gate Array)内嵌高速接口总抖动的问题,文中提出了一种基于优化BPNN(Back Propagation Neural Network)对高速接口进行总抖动预测的方法。利用GA(Genetic Algo... 针对ATE(Automated Test Equipment)无法直接测试出FPGA(Field-Programmable Gate Array)内嵌高速接口总抖动的问题,文中提出了一种基于优化BPNN(Back Propagation Neural Network)对高速接口进行总抖动预测的方法。利用GA(Genetic Algorithm)较强的全局搜索能力优化BPNN的初始权重和寻参过程,组成了GA_BP神经网络,提高了预测总抖动的准确率。利用MATLAB软件建立GA_BP总抖动预测模型,对筛选后的抖动数据进行预测优化。实验结果表明,与未优化的BP神经网络和传统Elman神经网络预测模型相比,GA_BP预测模型的均方误差分别下降了75.5%、88.0%,迭代次数分别减少了68.0%、59.8%,说明GA_BP模型预测准确率和迭代效率更高,可被应用于ATE中进行总抖动量产测试。 展开更多
关键词 高速接口 总抖动预测 优化bp神经网络 遗传算法 Grubbs准则 FPGA 均方误差 量产测试
下载PDF
Salt and Pepper Noise Filter Based on GA-BP Algorithm Noise Detector 被引量:2
17
作者 宋寅卯 李晓娟 《光电工程》 CAS CSCD 北大核心 2011年第2期59-64,共6页
基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网... 基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网络对图像中的噪声像素定位,然后引入保边函数和PRP算法求目标函数的极值进而实现图像的去噪处理。实验结果表明,该算法比传统滤波算法效果有明显改善,且具有良好的泛化性、鲁棒性和自适应性。 展开更多
关键词 GA-bp算法 椒盐噪声 噪声检测 保边函数 PRP算法
下载PDF
正交实验结合AHP和GA-BP神经网络优化益黄散醇提工艺 被引量:1
18
作者 王巍 杨武杰 +4 位作者 韩宇 安悦言 郝季 张强 鞠成国 《中国药房》 CAS 北大核心 2024年第3期327-332,共6页
目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法... 目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法(AHP)进行赋权并计算综合评分。通过验证正交实验和遗传算法(GA)-反向传播神经网络(BP神经网络)所预测的结果确定益黄散最佳醇提工艺参数。结果 正交实验优选的最佳醇提工艺参数为乙醇体积分数60%、液料比14∶1(mL/g)、提取时间90 min、提取2次,验证所得综合评分为79.19分;GA-BP神经网络优选的最佳醇提工艺参数为乙醇体积分数65%、液料比14∶1(mL/g)、提取时间60 min、提取2次,验证所得综合评分为85.30分,高于正交实验所得结果。结论 采用正交实验结合GA-BP神经网络的寻优方法较传统的正交实验寻优方法效果更佳,其优选出的益黄散最佳醇提工艺稳定可靠。 展开更多
关键词 益黄散 醇提工艺 正交实验 遗传算法 bp神经网络 层次分析法
下载PDF
采用改进BP-PID控制的机器人避障仿真研究 被引量:1
19
作者 吴静松 耿振铎 《中国工程机械学报》 北大核心 2024年第4期437-441,共5页
针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积... 针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积分-微分(PID)控制器和3层BP神经网络结构,利用BP神经网络的学习能力调整PID控制器参数。引用粒子群算法进行改进,通过改进粒子群算法在线优化BP-PID控制器,确保移动机器人BP-PID控制器收敛于全局最优值,从而使移动机器人避障效果更好。在不同环境中,采用Matlab软件对移动机器人避障效果进行仿真,比较改进前和改进后的移动机器人避障效果。结果显示:在不同环境中,改进前和改进后的BP-PID控制器均能使移动机器人安全地躲避障碍物;但是采用改进的粒子群算法优化BP-PID控制器,可以使移动机器人运动路径更短,迭代次数更少,搜索时间更短。采用改进BP-PID控制器,能够提高移动机器人避障过程中寻路速度,缩短行驶路径,效果更好。 展开更多
关键词 移动机器人 bp神经网络 PID控制器 改进粒子群算法 避障 仿真
下载PDF
基于CSSA-BPNN模型的胶结充填体动态抗压强度预测 被引量:1
20
作者 王小林 梅佳伟 +3 位作者 郭进平 卢才武 王颂 李泽峰 《有色金属工程》 CAS 北大核心 2024年第2期92-101,共10页
充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体... 充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体动态抗压强度作为输出参数,建立了一种基于Logistic混沌麻雀搜索算法(CSSA)优化BP神经网络(BPNN)的预测模型,并与传统BPNN和麻雀搜索算法优化的BPNN进行了对比分析。结果表明:CSSA-BPNN模型的平均相对误差为4.11%,预测值与实测值之间拟合的相关系数均在0.96以上,模型预测精度高。CSSA-BPNN模型的均方根误差为0.395 0 MPa,平均绝对误差为0.359 2 MPa,决定系数为0.995 2,均优于另外两种预测模型。实现了对充填体动态抗压强度的准确预测,可大幅减小物理实验量,为矿山胶结充填体的强度设计提供了一种新方法。 展开更多
关键词 混沌麻雀搜索算法(CSSA) bp神经网络(bpNN) 胶结充填体 分离式霍普金森压杆(SHPB) 动态抗压强度
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部