Variations of sedimentation rate within a basin over geologic time are a time series that can be filtered into several cyclic wave curves. Based on back-stripping and the empirical mode decomposition method, the cores...Variations of sedimentation rate within a basin over geologic time are a time series that can be filtered into several cyclic wave curves. Based on back-stripping and the empirical mode decomposition method, the cores from 14 wells in the Tarim Basin were selected to do filtering analysis. Four cycles or quasi-cycles (33 Ma, 64.4 Ma, 103.6 Ma, and 224 Ma) were obtained. Among these, the 33 Ma period, which was related to the internal earth activity, an external force, or a combination of the two, was the most obvious. The 64.4 Ma period corresponded to the solar system crossing the galaxy plane or the periodic melting of inner-earth material. The 103.6 Ma period was related with plate collisional tectonism around the Tarim Plate. The 224 Ma period was related to one galaxy year and may also be related to the aesthenospherical convection cycle.展开更多
Using a back-stripping method, our paper simulated the subsidence history of the eastern depression in the North Yellow Sea Basin. The subsidence history curve pattern and the subsidence chorisogram during every subsi...Using a back-stripping method, our paper simulated the subsidence history of the eastern depression in the North Yellow Sea Basin. The subsidence history curve pattern and the subsidence chorisogram during every subsiding period were exposed. Combining with the regional geologic background and the distribution features of the subsiding centers in every period, a contrasting study of the pattern and the classical subsidence history curves shows the subsi- dence history is made up of Mesozoic (J3-K1) and Cenozoic (E2-Q) subsiding cycles. The two subsiding cycles are separated by the late Cretaceous and Paleocene (K2-E1) uplift denudation. Both subsiding cycles have the characteristics of an extension basin. The rapid subsidence during the late Jurassic and Eocene is equivalent to the initial subsiding phases in both cycles.. The slow subsidence of both, the early Cretaceous and Neogene, can be regarded as thermal sub-sidence phases .展开更多
The Pearl River Mouth Basin, which is situated on the northern margin of the South China Sea, has attracted great attention not only because of its tectonic setting but also because of its abundant hydrocarbon resourc...The Pearl River Mouth Basin, which is situated on the northern margin of the South China Sea, has attracted great attention not only because of its tectonic setting but also because of its abundant hydrocarbon resources. We have analyzed the Cenozoic tectonic subsidence history of 4 drilled wells and 43 artificial wells from the Zhu 1 Sub-basin of the Pearl River Mouth Basin by back-stripping, using newly interpreted seismic profiles. We also calculated the average tectonic sub- sidence rates of the four sags in the Zhu 1 Sub-basin. The rifting and post-rifting stages are separated by abrupt changes in the tectonic subsidence curves and average subsidence rates. In the eastem sags of the Zhu 1 Sub- basin, tectonic subsidence started to slow at ca. 30 Ma, compared with ca. 23.8 Ma in the western sags. This probably corresponds to the timing of break-up and suggests that tiffing in the Pearl River Mouth Basin ended earlier in the eastern sags than in the western sags. Anomalously accelerated tectonic subsidence occurred at 17.5-16.4 Ma during the post-tiffing stage, with average subsidence rates as high as 301.9 m/Myr. This distin- guishes the Pearl River Mouth Basin from classical Atlantic passive continental marginal basins, which demonstrate exponentially decaying post-rift tectonic subsidence.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No.41172124)the Petroleum Exploration and Production Research Institute,Sinopec Company Ltd
文摘Variations of sedimentation rate within a basin over geologic time are a time series that can be filtered into several cyclic wave curves. Based on back-stripping and the empirical mode decomposition method, the cores from 14 wells in the Tarim Basin were selected to do filtering analysis. Four cycles or quasi-cycles (33 Ma, 64.4 Ma, 103.6 Ma, and 224 Ma) were obtained. Among these, the 33 Ma period, which was related to the internal earth activity, an external force, or a combination of the two, was the most obvious. The 64.4 Ma period corresponded to the solar system crossing the galaxy plane or the periodic melting of inner-earth material. The 103.6 Ma period was related with plate collisional tectonism around the Tarim Plate. The 224 Ma period was related to one galaxy year and may also be related to the aesthenospherical convection cycle.
基金Project GZH200200101 supported by China Geological Survey
文摘Using a back-stripping method, our paper simulated the subsidence history of the eastern depression in the North Yellow Sea Basin. The subsidence history curve pattern and the subsidence chorisogram during every subsiding period were exposed. Combining with the regional geologic background and the distribution features of the subsiding centers in every period, a contrasting study of the pattern and the classical subsidence history curves shows the subsi- dence history is made up of Mesozoic (J3-K1) and Cenozoic (E2-Q) subsiding cycles. The two subsiding cycles are separated by the late Cretaceous and Paleocene (K2-E1) uplift denudation. Both subsiding cycles have the characteristics of an extension basin. The rapid subsidence during the late Jurassic and Eocene is equivalent to the initial subsiding phases in both cycles.. The slow subsidence of both, the early Cretaceous and Neogene, can be regarded as thermal sub-sidence phases .
文摘The Pearl River Mouth Basin, which is situated on the northern margin of the South China Sea, has attracted great attention not only because of its tectonic setting but also because of its abundant hydrocarbon resources. We have analyzed the Cenozoic tectonic subsidence history of 4 drilled wells and 43 artificial wells from the Zhu 1 Sub-basin of the Pearl River Mouth Basin by back-stripping, using newly interpreted seismic profiles. We also calculated the average tectonic sub- sidence rates of the four sags in the Zhu 1 Sub-basin. The rifting and post-rifting stages are separated by abrupt changes in the tectonic subsidence curves and average subsidence rates. In the eastem sags of the Zhu 1 Sub- basin, tectonic subsidence started to slow at ca. 30 Ma, compared with ca. 23.8 Ma in the western sags. This probably corresponds to the timing of break-up and suggests that tiffing in the Pearl River Mouth Basin ended earlier in the eastern sags than in the western sags. Anomalously accelerated tectonic subsidence occurred at 17.5-16.4 Ma during the post-tiffing stage, with average subsidence rates as high as 301.9 m/Myr. This distin- guishes the Pearl River Mouth Basin from classical Atlantic passive continental marginal basins, which demonstrate exponentially decaying post-rift tectonic subsidence.