In the paper, nonlinear ordinary stochastic difference equations are first studied. Then a few of sufficient conditions on (uniform, uniform and asymptotic, uniformly asymptotic) p-moment stability of these equations ...In the paper, nonlinear ordinary stochastic difference equations are first studied. Then a few of sufficient conditions on (uniform, uniform and asymptotic, uniformly asymptotic) p-moment stability of these equations are established by Liapunov function.展开更多
Stochastic partial differential equations (SPDEs) describe the dynamics of stochastic processes depending on space-time continuum. These equations have been widely used to model many applications in engineering and ma...Stochastic partial differential equations (SPDEs) describe the dynamics of stochastic processes depending on space-time continuum. These equations have been widely used to model many applications in engineering and mathematical sciences. In this paper we use three finite difference schemes in order to approximate the solution of stochastic parabolic partial differential equations. The conditions of the mean square convergence of the numerical solution are studied. Some case studies are discussed.展开更多
In this paper, we have presented some general necessary and sufficient conditions for the existence of periodic solutions to nonlinear stochastic difference equations on semi-compact topological space. Effective suffi...In this paper, we have presented some general necessary and sufficient conditions for the existence of periodic solutions to nonlinear stochastic difference equations on semi-compact topological space. Effective sufficient conditions in terms of Lyapunov functions are derived for the systems linear in noise.展开更多
By using the Feynman-Kac formula and combining with Itˆo-Taylor expansion and finite difference approximation,we first develop an explicit third order onestep method for solving decoupled forward backward stochastic d...By using the Feynman-Kac formula and combining with Itˆo-Taylor expansion and finite difference approximation,we first develop an explicit third order onestep method for solving decoupled forward backward stochastic differential equations.Then based on the third order one,an explicit fourth order method is further proposed.Several numerical tests are also presented to illustrate the stability and high order accuracy of the proposed methods.展开更多
In this paper, a bivariate stochastic process with Poisson postulates has been considered to model the incomings, outgoings and mutual transfers of investments between and within the portfolios during an epoch of time...In this paper, a bivariate stochastic process with Poisson postulates has been considered to model the incomings, outgoings and mutual transfers of investments between and within the portfolios during an epoch of time “t”. Stochastic differential equations were obtained from the simple differential difference equations during the epoch of time “Δt”. The notion of bivariate linear birth, death and migration process has been utilized for measuring various statistical characteristics among the investments of Long and Short terms. All possible fluctuations in the investment flow have been considered to explore more meaningful assumptions with contemporary marketing environments. Mathematical relations for proposed statistical measures such as average sizes and variances of short term and long-term investments along with the correlation coefficient between them are derived after obtaining the related differential equations. Numerical illustrations were provided for better understanding of the developed models with practitioner’s point of view.展开更多
An explicit differencescheme is described,analyzed and tested for numer-ically approximating stochastic elastic equation driven by infinite dimensional noise.The noise processes are approximated by piecewise constant ...An explicit differencescheme is described,analyzed and tested for numer-ically approximating stochastic elastic equation driven by infinite dimensional noise.The noise processes are approximated by piecewise constant random processes and the integral formula of the stochastic elastic equation is approximated by a truncated series.Error analysis of the numerical method yields estimate of convergence rate.The rate of convergence is demonstrated with numerical experiments.展开更多
The two-dimensional Landau-Lifshitz-Gilbert equation of motion for a classical magnetic moment perturbed by a multiplicative noise is considered. This equation is highly nonlinear in nature and, for this reason, many ...The two-dimensional Landau-Lifshitz-Gilbert equation of motion for a classical magnetic moment perturbed by a multiplicative noise is considered. This equation is highly nonlinear in nature and, for this reason, many mathematical results in stochastic partial differential equations (SPDEs) cannot be applied. The aim of this work is to introduce the difference method to handle SPDEs and prove the existence of regular martingale solutions in dimension two. Some blow-up phenomena are presented, which are drastically different from the deterministic case. Finally, to yield correct thermal-equilibrium properties, Stratonovitch integral is used instead of Ito integral.展开更多
In this article, we consider a stochastic hydrodynamical equation in Heisenberg paramagnet driven by additive noise. We prove the existence and uniqueness of smooth solutions to this equation with difference method.
The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p...The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.展开更多
Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)...Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity.展开更多
文摘In the paper, nonlinear ordinary stochastic difference equations are first studied. Then a few of sufficient conditions on (uniform, uniform and asymptotic, uniformly asymptotic) p-moment stability of these equations are established by Liapunov function.
文摘Stochastic partial differential equations (SPDEs) describe the dynamics of stochastic processes depending on space-time continuum. These equations have been widely used to model many applications in engineering and mathematical sciences. In this paper we use three finite difference schemes in order to approximate the solution of stochastic parabolic partial differential equations. The conditions of the mean square convergence of the numerical solution are studied. Some case studies are discussed.
文摘In this paper, we have presented some general necessary and sufficient conditions for the existence of periodic solutions to nonlinear stochastic difference equations on semi-compact topological space. Effective sufficient conditions in terms of Lyapunov functions are derived for the systems linear in noise.
基金supported by the NSF of China(No.12001539)the NSF of Hunan Province(No.2020JJ5647)China Postdoctoral Science Foundation(No.2019TQ0073).
文摘By using the Feynman-Kac formula and combining with Itˆo-Taylor expansion and finite difference approximation,we first develop an explicit third order onestep method for solving decoupled forward backward stochastic differential equations.Then based on the third order one,an explicit fourth order method is further proposed.Several numerical tests are also presented to illustrate the stability and high order accuracy of the proposed methods.
文摘In this paper, a bivariate stochastic process with Poisson postulates has been considered to model the incomings, outgoings and mutual transfers of investments between and within the portfolios during an epoch of time “t”. Stochastic differential equations were obtained from the simple differential difference equations during the epoch of time “Δt”. The notion of bivariate linear birth, death and migration process has been utilized for measuring various statistical characteristics among the investments of Long and Short terms. All possible fluctuations in the investment flow have been considered to explore more meaningful assumptions with contemporary marketing environments. Mathematical relations for proposed statistical measures such as average sizes and variances of short term and long-term investments along with the correlation coefficient between them are derived after obtaining the related differential equations. Numerical illustrations were provided for better understanding of the developed models with practitioner’s point of view.
基金supported by the Innovation Foundation of BUAA for PhD Graduates and the National Natural Science Foundation of China under grant 61271010.
文摘An explicit differencescheme is described,analyzed and tested for numer-ically approximating stochastic elastic equation driven by infinite dimensional noise.The noise processes are approximated by piecewise constant random processes and the integral formula of the stochastic elastic equation is approximated by a truncated series.Error analysis of the numerical method yields estimate of convergence rate.The rate of convergence is demonstrated with numerical experiments.
基金supported by National Natural Science Foundation of China (Grant No. 11001285)
文摘The two-dimensional Landau-Lifshitz-Gilbert equation of motion for a classical magnetic moment perturbed by a multiplicative noise is considered. This equation is highly nonlinear in nature and, for this reason, many mathematical results in stochastic partial differential equations (SPDEs) cannot be applied. The aim of this work is to introduce the difference method to handle SPDEs and prove the existence of regular martingale solutions in dimension two. Some blow-up phenomena are presented, which are drastically different from the deterministic case. Finally, to yield correct thermal-equilibrium properties, Stratonovitch integral is used instead of Ito integral.
基金The first author is supported by National Natural Science Foundation of China (Grant No. 11001285) The authors thank the referees for their careful reading and helpful suggestions and comments, which improve the original manuscript greatly.
文摘In this article, we consider a stochastic hydrodynamical equation in Heisenberg paramagnet driven by additive noise. We prove the existence and uniqueness of smooth solutions to this equation with difference method.
基金supported by the National Natural Science Foundation of China(62273213,62073199,62103241)Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)+4 种基金Natural Science Foundation of Shandong Province(ZR2020MF095,ZR2021QF107)Taishan Scholarship Construction Engineeringthe Original Exploratory Program Project of National Natural Science Foundation of China(62250056)Major Basic Research of Natural Science Foundation of Shandong Province(ZR2021ZD14)High-level Talent Team Project of Qingdao West Coast New Area(RCTD-JC-2019-05)。
文摘The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.
文摘Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity.