In order to predict backfill strength rapidly with high accuracy and provide a new technical support for digitization and intelligentization of mine,a support vector regression(SVR)model improved by grey wolf optimiza...In order to predict backfill strength rapidly with high accuracy and provide a new technical support for digitization and intelligentization of mine,a support vector regression(SVR)model improved by grey wolf optimization(GWO),GWO-SVR model,is established.First,GWO is used to optimize penalty term and kernel function parameter in SVR model with high accuracy based on the experimental data of uniaxial compressive strength of filling body.Subsequently,a prediction model which uses the best two parameters of best c and best g is established with the slurry density,cement dosage,ratio of artificial aggregate to tailings,and curing time taken as input factors,and uniaxial compressive strength of backfill as the output factor.The root mean square error of this GWO-SVR model in predicting backfill strength is 0.143 and the coefficient of determination is 0.983,which means that the predictive effect of this model is accurate and reliable.Compared with the original SVR model without the optimization of GWO and particle swam optimization(PSO)-SVR model,the performance of GWO-SVR model is greatly promoted.The establishment of GWO-SVR model provides a new tool for predicting backfill strength scientifically.展开更多
Backfill is increasingly used in underground mines to reduce the surface impact from the wastes produced by the mining operations. But the main objectives of backfilling are to improve ground stability and reduce ore ...Backfill is increasingly used in underground mines to reduce the surface impact from the wastes produced by the mining operations. But the main objectives of backfilling are to improve ground stability and reduce ore dilution. To this end, the backfill in a stope must possess a minimum strength to remain self-standing during mining of an adjacent stope. This required strength is often estimated using a solution proposed by Mitchell and co-workers, which was based on a limit equilibrium analysis of a wedge exposed by the open face. In this paper, three dimensional numerical simulations have been performed to assess the behavior of the wedge model. A new limit equilibrium solution is proposed, based on the backfill displacements obtained from the simulations. Comparisons are made between the proposed solution and experimental and numerical modeling results. Compared with the previous solution, a better agreement is obtained between the new solution and experimental results for the required cohesion and factor of safety. For large scale(field) conditions, the results also show that the required strength obtained from the proposed solution corresponds quite well to the simulated backfill response.展开更多
Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfi...Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfill. Physical model tests were performed. Good agreements were obtained between the required strengths predicted by the analytical solution and experimental results. However, it is well-known that zero friction angle can only be possible in terms of total stresses when geomaterials are submitted to unconsolidated and undrained conditions. A revisit to Mitchell's physical model tests reveals that both the laboratory tests performed for obtaining the shear strength parameters of the cemented backfill and the box stability tests were conducted under a condition close to undrained condition. This explains well the good agreement between Mitchell's solution and experimental results. Good agreements are equally obtained between Mitchell's experimental results and FLAC3 D numerical modeling of shortterm stability analyses of exposed cemented backfill.展开更多
Mine waste and process tailings storage is one of important challenge for which mining operations are increasingly confronted. Treatment discharges of plants and main part of waste rock development are generally store...Mine waste and process tailings storage is one of important challenge for which mining operations are increasingly confronted. Treatment discharges of plants and main part of waste rock development are generally stored on surface areas. The volume and chemical characteristics of these materials generate serious problem for required storage spaces and mainly environmental degradation. Paste backfill(PBF) is one of ingenious solutions to minimize the quantity of tailings to store. PBF is basically defined as a combination of mine processing tailings, binder, and water mixing. The purpose of this paper is to present backfilling components characterization and formula verification for a waste valorization solution through paste backfilling technology in Imiter operation. Obtained results and realized analysis demonstrate PBF conformity and adequacy with assigned underground functions. However the studied recipe can be more ameliorated to obtain an optimal mixture ensuring the required mechanical strength.展开更多
Hydraulic characteristic is a good indication of binder hydration, which determines the strength development of cemented paste backfill(CPB). Therefore, the hydraulic characteristic should be communicated with the m...Hydraulic characteristic is a good indication of binder hydration, which determines the strength development of cemented paste backfill(CPB). Therefore, the hydraulic characteristic should be communicated with the mechanical property to provide an advanced knowledge that can help mine workers make a rational strategy and reduce the mining cycle. An experimental program was performed to obtain the hydraulic(monitored by suction and volumetric water content) and mechanical properties(unconfined compressive strength(UCS) test) of CPB at the 28 days curing age. According to the monitoring and testing results, the relationships between the hydration reaction rate and volumetric water content(VWC), suction and VWC, suction and UCS were established. The hydration degree showed a liner rise as the VWC decreased. Curves of the VWC and UCS were featured with a nonlinear reduction and nonlinear growth(both are exponential functions) as the suction rising, respectively. These established relationships validated the strong correlative mechanism of hydraulic and mechanics behavior for CPB. Also, the results of the present research indicated that the hydraulic characteristics and mechanical property were strongly coupled. These correlations and couplings will be of great importance to understand the hardening process of CPB and bring to a safe CPB field operation.展开更多
This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional be...This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional behaviors of these interfaces were assessed for the short-term curing times(3 d and 7 d) using a direct shear apparatus RDS-200 from GCTS(Geotechnical Consulting & Testing Systems). The shear(friction) tests were performed at three different constant normal stress levels on flat and smooth interfaces. These tests aimed at understanding the mobilized shear strength at the CPB-rock and CPB-CPB interfaces during and/or after open stope filling(no exposed face). The applied normal stress levels were varied in a range corresponding to the usually measured in-situ horizontal pressures(longitudinal or transverse) developed within paste-filled stopes(uniaxial compressive strength, s c 150 k Pa). Results show that the mobilized shear strength is higher at the CPB-CPB interface than that at the CPB-rock interface. Also, the perfect elastoplastic behaviors observed for the CPB-rock interfaces were not observed for the CPB-CPB interfaces with low cement content which exhibits a strain-hardening behavior. These results are useful to estimate or validate numerical model for pressures determination in cemented backfill stope at short term. The tests were performed on real backfill and granite. The results may help understanding the mechanical behavior of the cemented paste backfill in general and, in particular, analyzing the shear strength at backfillebackfill and backfill-rock interfaces.展开更多
基金the National Natural Science Foundation of China(No.51304011)。
文摘In order to predict backfill strength rapidly with high accuracy and provide a new technical support for digitization and intelligentization of mine,a support vector regression(SVR)model improved by grey wolf optimization(GWO),GWO-SVR model,is established.First,GWO is used to optimize penalty term and kernel function parameter in SVR model with high accuracy based on the experimental data of uniaxial compressive strength of filling body.Subsequently,a prediction model which uses the best two parameters of best c and best g is established with the slurry density,cement dosage,ratio of artificial aggregate to tailings,and curing time taken as input factors,and uniaxial compressive strength of backfill as the output factor.The root mean square error of this GWO-SVR model in predicting backfill strength is 0.143 and the coefficient of determination is 0.983,which means that the predictive effect of this model is accurate and reliable.Compared with the original SVR model without the optimization of GWO and particle swam optimization(PSO)-SVR model,the performance of GWO-SVR model is greatly promoted.The establishment of GWO-SVR model provides a new tool for predicting backfill strength scientifically.
基金financial support of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the partners of Research Institute on Mines and the Environment (RIME UQAT-Polytechnique http://rime-irme.ca)
文摘Backfill is increasingly used in underground mines to reduce the surface impact from the wastes produced by the mining operations. But the main objectives of backfilling are to improve ground stability and reduce ore dilution. To this end, the backfill in a stope must possess a minimum strength to remain self-standing during mining of an adjacent stope. This required strength is often estimated using a solution proposed by Mitchell and co-workers, which was based on a limit equilibrium analysis of a wedge exposed by the open face. In this paper, three dimensional numerical simulations have been performed to assess the behavior of the wedge model. A new limit equilibrium solution is proposed, based on the backfill displacements obtained from the simulations. Comparisons are made between the proposed solution and experimental and numerical modeling results. Compared with the previous solution, a better agreement is obtained between the new solution and experimental results for the required cohesion and factor of safety. For large scale(field) conditions, the results also show that the required strength obtained from the proposed solution corresponds quite well to the simulated backfill response.
基金financial support from China Scholarship Council(CSC)under the Grant CSC No.201406460041financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC 402318)+4 种基金the Institut de Recherche Robert-Sauvéen Santéet en Sécuritédu Travail(IRSST 2013-0029)Fonds de Recherche du Québec-Nature et Technologies(FRQNT 2015-MI-191676)the industrial partners of Research Institute on Mines and Environment(RIME UQAT-Polytechnique)The financial support from the National Science and Technology Support Program of China(No.2013BAB02B02)the Scientific Research Fund of Beijing General Research Institute of Mining and Metallurgy of China(No.YJ201507)
文摘Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfill. Physical model tests were performed. Good agreements were obtained between the required strengths predicted by the analytical solution and experimental results. However, it is well-known that zero friction angle can only be possible in terms of total stresses when geomaterials are submitted to unconsolidated and undrained conditions. A revisit to Mitchell's physical model tests reveals that both the laboratory tests performed for obtaining the shear strength parameters of the cemented backfill and the box stability tests were conducted under a condition close to undrained condition. This explains well the good agreement between Mitchell's solution and experimental results. Good agreements are equally obtained between Mitchell's experimental results and FLAC3 D numerical modeling of shortterm stability analyses of exposed cemented backfill.
文摘Mine waste and process tailings storage is one of important challenge for which mining operations are increasingly confronted. Treatment discharges of plants and main part of waste rock development are generally stored on surface areas. The volume and chemical characteristics of these materials generate serious problem for required storage spaces and mainly environmental degradation. Paste backfill(PBF) is one of ingenious solutions to minimize the quantity of tailings to store. PBF is basically defined as a combination of mine processing tailings, binder, and water mixing. The purpose of this paper is to present backfilling components characterization and formula verification for a waste valorization solution through paste backfilling technology in Imiter operation. Obtained results and realized analysis demonstrate PBF conformity and adequacy with assigned underground functions. However the studied recipe can be more ameliorated to obtain an optimal mixture ensuring the required mechanical strength.
基金Funded by the National Natural Science Foundation of China(Nos.51574013,51374034,51674012)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining,CUMT(No.12KF03)+1 种基金the State Key Research Development Program of China(Nos.2016YFC0600704,2016YFC0600709)Beijing Municipal Science and Technology Commission(No.Z161100001216002)
文摘Hydraulic characteristic is a good indication of binder hydration, which determines the strength development of cemented paste backfill(CPB). Therefore, the hydraulic characteristic should be communicated with the mechanical property to provide an advanced knowledge that can help mine workers make a rational strategy and reduce the mining cycle. An experimental program was performed to obtain the hydraulic(monitored by suction and volumetric water content) and mechanical properties(unconfined compressive strength(UCS) test) of CPB at the 28 days curing age. According to the monitoring and testing results, the relationships between the hydration reaction rate and volumetric water content(VWC), suction and VWC, suction and UCS were established. The hydration degree showed a liner rise as the VWC decreased. Curves of the VWC and UCS were featured with a nonlinear reduction and nonlinear growth(both are exponential functions) as the suction rising, respectively. These established relationships validated the strong correlative mechanism of hydraulic and mechanics behavior for CPB. Also, the results of the present research indicated that the hydraulic characteristics and mechanical property were strongly coupled. These correlations and couplings will be of great importance to understand the hardening process of CPB and bring to a safe CPB field operation.
文摘This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional behaviors of these interfaces were assessed for the short-term curing times(3 d and 7 d) using a direct shear apparatus RDS-200 from GCTS(Geotechnical Consulting & Testing Systems). The shear(friction) tests were performed at three different constant normal stress levels on flat and smooth interfaces. These tests aimed at understanding the mobilized shear strength at the CPB-rock and CPB-CPB interfaces during and/or after open stope filling(no exposed face). The applied normal stress levels were varied in a range corresponding to the usually measured in-situ horizontal pressures(longitudinal or transverse) developed within paste-filled stopes(uniaxial compressive strength, s c 150 k Pa). Results show that the mobilized shear strength is higher at the CPB-CPB interface than that at the CPB-rock interface. Also, the perfect elastoplastic behaviors observed for the CPB-rock interfaces were not observed for the CPB-CPB interfaces with low cement content which exhibits a strain-hardening behavior. These results are useful to estimate or validate numerical model for pressures determination in cemented backfill stope at short term. The tests were performed on real backfill and granite. The results may help understanding the mechanical behavior of the cemented paste backfill in general and, in particular, analyzing the shear strength at backfillebackfill and backfill-rock interfaces.