This paper introduces a sliding-window mean removal high pass filter by which background clutter of infrared multispectral image is obtained. The method of selecting the optimum size of the sliding-window is based on ...This paper introduces a sliding-window mean removal high pass filter by which background clutter of infrared multispectral image is obtained. The method of selecting the optimum size of the sliding-window is based on the skewness-kurtosis test. In the end, a multivariate Gaussian distribution mathematical expression of background clutter image is given.展开更多
MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, in...MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.展开更多
文摘This paper introduces a sliding-window mean removal high pass filter by which background clutter of infrared multispectral image is obtained. The method of selecting the optimum size of the sliding-window is based on the skewness-kurtosis test. In the end, a multivariate Gaussian distribution mathematical expression of background clutter image is given.
文摘MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.