In order to investigate the application performances of the solar greenhouses with new types of backwall(greenhouse W_(2),and greenhouse W_(3))and the ordinary clay brick backwall greenhouse(greenhouse W_(1)),and prov...In order to investigate the application performances of the solar greenhouses with new types of backwall(greenhouse W_(2),and greenhouse W_(3))and the ordinary clay brick backwall greenhouse(greenhouse W_(1)),and provide a theoretical basis for the construction of solar greenhouse in Yangling Demonstration Zone,Shaanxi,China,two greenhouses with different new types of backwall were designed.The backwall of one of them was built with lightweight aggregate concrete block(greenhouse W_(2))and that of the other one was assembled with a row of sand-filled cement pipes(greenhouse W_(3)).The tested greenhouses were constructed in Yangling Demonstration Zone.Based on the data collected on typical sunny and cloudy days,the indoor temperature,inside wall temperature,and the heat flow of the greenhouses with new types of backwall were compared with those detected in the ordinary clay brick backwall solar greenhouse,and the tested results were numerically simulated.According to the comparison of the physiological indicators of tomatoes planted in the greenhouses and the construction costs,the greenhouse type with the best practicability was found.The results indicated that:The average air temperature in greenhouses W_(1),W_(2),and W_(3)and outside was 15.1℃,15.9℃,17.3℃,and−0.4℃ on the night of a sunny day,and the air temperature in W_(3)was the highest.The average air temperature in greenhouses W_(1),W_(2),and W_(3)and outside were 9.5℃,13.3℃,11.0℃,and−5.5℃ on the night of a cloudy day,the air temperature in W_(2)was the highest.In the depth of 0-330 mm from the interface of the backwalls,the walls were obviously affected by the solar radiation,and the temperature changed greatly.The wall temperature on the sunny days exhibited an ascending order of W_(1),W_(2),W_(3),while on the cloudy days was in the ascending order of W_(1),W_(3),W_(2).The wall of W_(3)absorbed the most heat during the daytime and released the most heat at night on the sunny day,while W_(2)exhibited the second most heat absorption during the daytime,however,it exhibited the highest heat release at night on the cloudy day,which were almost equaled to its heat absorption.Tomatoes in W_(3)grew well and exhibited the highest yield,and this greenhouse had the lowest construction costs.Comprehensively considering the physiological indicators of tomatoes and the corresponding construction costs of greenhouses,W_(3)has the best application performance in Yangling Demonstration Zone.展开更多
The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the pa...The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the parameters such as the location and depth of drilling. The record of elastic wave can be gained through laying the surveying lines of the ring and ver- tical direction in the shaft lining by the elastic wave method. And specifically, through analyzing the different parameters of seismic attribute such as the velocity of high frequency reflection wave, amplitude and frequency, the abnormal range on the wall or under the wall can be forecasted. The concrete quality of shallow layer in the shaft lining can be evaluated through the velocity of surfer wave. Using the evaluating technique of comprehensive frequency and the phase feature of waveform, the basic features such as inner construction, wall back filling and failure depth of shaft lining can be interpreted from qualitatively to half quantitatively, and the interpreting section can be drawn. The results show that the detection effect for the shaft quality is significant by elastic wave technique, and the delineation of abnormal areas is accurate. Its guidance function is better for pro- duction.展开更多
基金This research was financially supported by the Shaanxi Provincial Key Research and Development Program(Grant No.2019TSLNY01-03)the National Natural Science Foundation of China(Grant No.31901420)the Young Scientist Promotion Project of Jiangsu Science and Technology Association(Grant No.2020-2-46).
文摘In order to investigate the application performances of the solar greenhouses with new types of backwall(greenhouse W_(2),and greenhouse W_(3))and the ordinary clay brick backwall greenhouse(greenhouse W_(1)),and provide a theoretical basis for the construction of solar greenhouse in Yangling Demonstration Zone,Shaanxi,China,two greenhouses with different new types of backwall were designed.The backwall of one of them was built with lightweight aggregate concrete block(greenhouse W_(2))and that of the other one was assembled with a row of sand-filled cement pipes(greenhouse W_(3)).The tested greenhouses were constructed in Yangling Demonstration Zone.Based on the data collected on typical sunny and cloudy days,the indoor temperature,inside wall temperature,and the heat flow of the greenhouses with new types of backwall were compared with those detected in the ordinary clay brick backwall solar greenhouse,and the tested results were numerically simulated.According to the comparison of the physiological indicators of tomatoes planted in the greenhouses and the construction costs,the greenhouse type with the best practicability was found.The results indicated that:The average air temperature in greenhouses W_(1),W_(2),and W_(3)and outside was 15.1℃,15.9℃,17.3℃,and−0.4℃ on the night of a sunny day,and the air temperature in W_(3)was the highest.The average air temperature in greenhouses W_(1),W_(2),and W_(3)and outside were 9.5℃,13.3℃,11.0℃,and−5.5℃ on the night of a cloudy day,the air temperature in W_(2)was the highest.In the depth of 0-330 mm from the interface of the backwalls,the walls were obviously affected by the solar radiation,and the temperature changed greatly.The wall temperature on the sunny days exhibited an ascending order of W_(1),W_(2),W_(3),while on the cloudy days was in the ascending order of W_(1),W_(3),W_(2).The wall of W_(3)absorbed the most heat during the daytime and released the most heat at night on the sunny day,while W_(2)exhibited the second most heat absorption during the daytime,however,it exhibited the highest heat release at night on the cloudy day,which were almost equaled to its heat absorption.Tomatoes in W_(3)grew well and exhibited the highest yield,and this greenhouse had the lowest construction costs.Comprehensively considering the physiological indicators of tomatoes and the corresponding construction costs of greenhouses,W_(3)has the best application performance in Yangling Demonstration Zone.
文摘The quality problem of the concrete body and backwall grouting of shaft lining must be taken into consideration during the engineering construction of the shaft. Detection and evaluation are needed to determine the parameters such as the location and depth of drilling. The record of elastic wave can be gained through laying the surveying lines of the ring and ver- tical direction in the shaft lining by the elastic wave method. And specifically, through analyzing the different parameters of seismic attribute such as the velocity of high frequency reflection wave, amplitude and frequency, the abnormal range on the wall or under the wall can be forecasted. The concrete quality of shallow layer in the shaft lining can be evaluated through the velocity of surfer wave. Using the evaluating technique of comprehensive frequency and the phase feature of waveform, the basic features such as inner construction, wall back filling and failure depth of shaft lining can be interpreted from qualitatively to half quantitatively, and the interpreting section can be drawn. The results show that the detection effect for the shaft quality is significant by elastic wave technique, and the delineation of abnormal areas is accurate. Its guidance function is better for pro- duction.