This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Und...This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.展开更多
Consider a 1-D backward heat conduction problem with Robin boundary condition. We recover u(x, 0) and u(x, to) for to ∈ (0, T) from the measured data u(x, T)respectively. The first problem is solved by the Morozov di...Consider a 1-D backward heat conduction problem with Robin boundary condition. We recover u(x, 0) and u(x, to) for to ∈ (0, T) from the measured data u(x, T)respectively. The first problem is solved by the Morozov discrepancy principle for which a 3-order iteration procedure is applied to determine the regularizing parameter. For the second one, we combine the conditional stability with the Tikhonov regularization together to construct the regularizing solution for which the convergence rate is also established. Numerical results are given to show the validity of our inversion展开更多
This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equil...This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equilibrium and PE Stackelberg Nash equilibrium. In order to improve the computational efficiency of the uncertain solution, several operators (binary coding distance, inversion operator, explosion operator and binary back learning operator) are applied to the basic fireworks algorithm to design the binary backward fireworks algorithm (BBFWA), which has a good performance in solving the BKP. As an illustration, a case study of the UBKP model and the P-E uncertain solution is applied to an armaments transportation problem.展开更多
基金supported by the Natural Science Foundation of China(11801108)the Natural Science Foundation of Guangdong Province(2021A1515010314)the Science and Technology Planning Project of Guangzhou City(202201010111)。
文摘This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
文摘Consider a 1-D backward heat conduction problem with Robin boundary condition. We recover u(x, 0) and u(x, to) for to ∈ (0, T) from the measured data u(x, T)respectively. The first problem is solved by the Morozov discrepancy principle for which a 3-order iteration procedure is applied to determine the regularizing parameter. For the second one, we combine the conditional stability with the Tikhonov regularization together to construct the regularizing solution for which the convergence rate is also established. Numerical results are given to show the validity of our inversion
基金supported by the National Natural Science Foundation of China(7160118361502522)
文摘This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equilibrium and PE Stackelberg Nash equilibrium. In order to improve the computational efficiency of the uncertain solution, several operators (binary coding distance, inversion operator, explosion operator and binary back learning operator) are applied to the basic fireworks algorithm to design the binary backward fireworks algorithm (BBFWA), which has a good performance in solving the BKP. As an illustration, a case study of the UBKP model and the P-E uncertain solution is applied to an armaments transportation problem.