期刊文献+
共找到932篇文章
< 1 2 47 >
每页显示 20 50 100
FORCE RIPPLE SUPPRESSION TECHNOLOGY FOR LINEAR MOTORS BASED ON BACK PROPAGATION NEURAL NETWORK 被引量:7
1
作者 ZHANG Dailin CHEN Youping +2 位作者 AI Wu ZHOU Zude KONG Ching Tom 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期13-16,共4页
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I... Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network. 展开更多
关键词 Linear motor (LM) Back propagation(bp algorithm neural network Anti-disturbance technology
下载PDF
Surface Quality Evaluation of Fluff Fabric Based on Particle Swarm Optimization Back Propagation Neural Network 被引量:1
2
作者 MA Qiurui LIN Qiangqiang JIN Shoufeng 《Journal of Donghua University(English Edition)》 EI CAS 2019年第6期539-546,共8页
Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is p... Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is proposed.The sliced image is obtained by the principle of light-cutting imaging.The fluffy region of the adaptive image segmentation is extracted by the Freeman chain code principle.The upper edge coordinate information of the fabric is subjected to one-dimensional discrete wavelet decomposition to obtain high frequency information and low frequency information.After comparison and analysis,the BP neural network was trained by high frequency information,and the PSO algorithm was used to optimize the BP neural network.The optimized BP neural network has better weights and thresholds.The experimental results show that the accuracy of the optimized BP neural network after applying high-frequency information training is 97.96%,which is 3.79%higher than that of the unoptimized BP neural network,and has higher detection accuracy. 展开更多
关键词 WOOL FABRIC feature extraction WAVELET TRANSFORM particle SWARM optimization(PSO) back propagation(bp)neural network
下载PDF
Combinatorial Optimization Based Analog Circuit Fault Diagnosis with Back Propagation Neural Network 被引量:1
3
作者 李飞 何佩 +3 位作者 王向涛 郑亚飞 郭阳明 姬昕禹 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期774-778,共5页
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of... Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN. 展开更多
关键词 analog circuit fault diagnosis back propagation(bp) neural network combinatorial optimization TOLERANCE genetic algorithm(G A) Levenberg-Marquardt algorithm(LMA)
下载PDF
Preparation of ZrB_2-SiC Powders via Carbothermal Reduction of Zircon and Prediction of Product Composition by Back-Propagation Artificial Neural Network 被引量:1
4
作者 LIU Jianghao DU Shuang +2 位作者 LI Faliang ZHANG Haijun ZHANG Shaoweia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1062-1069,共8页
Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and ... Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy. 展开更多
关键词 ZrB2-SiC powders carbothermal reduction back-propagation artificial neural networks (bp-ANNs) composition prediction
下载PDF
Auto recognition of carbonate microfacies based on an improved back propagation neural network
5
作者 王玉玺 刘波 +4 位作者 高计县 张学丰 李顺利 刘建强 田泽普 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3521-3535,共15页
Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation... Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation neural network(BP-ANN) and an improved BP-ANN with better stability and suitability, optimized by a particle swarm optimizer(PSO) algorithm(PSO-BP-ANN) were proposed to solve the microfacies' auto discrimination of M formation from the R oil field in Iraq. Fourteen wells with complete core, borehole and log data were chosen as the standard wells and 120 microfacies samples were inferred from these 14 wells. Besides, the average value of gamma, neutron and density logs as well as the sum of squares of deviations of gamma were extracted as key parameters to build log facies(facies from log measurements)-microfacies transforming model. The total 120 log facies samples were divided into 12 kinds of log facies and 6 kinds of microfacies, e.g. lagoon bioclasts micrite limestone microfacies, shoal bioclasts grainstone microfacies, backshoal bioclasts packstone microfacies, foreshoal bioclasts micrite limestone microfacies, shallow continental micrite limestone microfacies and reef limestone microfacies. Furthermore, 68 samples of these 120 log facies samples were chosen as training samples and another 52 samples were gotten as testing samples to test the predicting ability of the discrimination template. Compared with conventional methods, like Bayes stepwise discrimination, both the BP-ANN and PSO-BP-ANN can integrate more log details with a correct rate higher than 85%. Furthermore, PSO-BP-ANN has more simple structure, smaller amount of weight and threshold and less iteration time. 展开更多
关键词 carbonate microfacies quantitative recognition bayes stepwise discrimination backward propagation neural network particle swarm optimizer
下载PDF
PREDICTION OF FLOW STRESS OF HIGH-SPEED STEEL DURING HOT DEFORMATION BY USING BP ARTIFICIAL NEURAL NETWORK 被引量:2
6
作者 J. T. Liu H.B. Chang +1 位作者 R.H. Wu T. Y. Hsu(Xu Zuyao) and X.R. Ruan( 1)Department of Plasticity Technology, Shanghai Jiao Tong University, Shanghai 200030, China 2)School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期394-400,共7页
The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃... The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy. 展开更多
关键词 T1 high-speed steel flow stress prediction of flow stress back propagation (bp) artificial neural network (ANN)
下载PDF
Structural form selection of the high-rise buildingwith the improved BP neural network
7
作者 Zhao Guangzhe Yang Hanting +2 位作者 Tu Bing Zhou Meiling Zhou Chengle 《High Technology Letters》 EI CAS 2020年第1期92-97,共6页
As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the ... As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the environment which makes the task arduous.An approach utilizing improved back propagation(BP)neural network optimized by the Levenberg-Marquardt(L-M)algorithm is proposed to extract the main controlling factors of structural form selection.Then,an intelligent expert system with artificial neural network is constructed to design high-rise buildings structure effectively.The experiment tests the model in 15 well-known architecture samples and get the prediction accuracy of 93.33%.The results show that the method is feasible and can help designers select the appropriate structural form. 展开更多
关键词 BACK propagation(bp)neural network HIGH-RISE building STRUCTURAL form selection Levenberg-Marquardt(L-M)algorithm
下载PDF
AGGREGATE VOLUMETRIC ESTIMATION BASED ON PCA AND MOMENTUM-ENHANCED BP NEURAL NETWORK
8
作者 Chen Ken Zhao Pan +1 位作者 Batur Celal Zhang Yun 《Journal of Electronics(China)》 2009年第5期637-643,共7页
This paper proposes a Back Propagation (BP) neural network with momentum enhancement aiming to achieving the smooth convergence for aggregate volumetric estimation purpose. Network inputs are first selected by optical... This paper proposes a Back Propagation (BP) neural network with momentum enhancement aiming to achieving the smooth convergence for aggregate volumetric estimation purpose. Network inputs are first selected by optically measuring the eight geometry-related parameters from the given particle image. To simplify the network structure, principal component analysis technique is applied to reduce the input dimension. The specific network structure is finalized based on both empirical expertise and analysis on selecting the appropriate number of neurons in hidden layer. The network is trained using the finite number of randomly-picked particles. The training and test results suggest that, compared to the generic BP network, the training duration of the proposed neural network is greatly attenuated, the complexity of the network structure is largely reduced, and the estimation precision is within 2%, being sufficiently up to technical satisfaction. 展开更多
关键词 Aggregate volume Back propagation (bp neural network MOMENTUM Volume estimate Principal Component Analysis (PCA)
下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
9
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms Back propagation model (bp model) OPTIMIZATION
下载PDF
Construction of Early-warning Model for Plant Diseases and Pests Based on Improved Neural Network 被引量:2
10
作者 曹志勇 邱靖 +1 位作者 曹志娟 杨毅 《Agricultural Science & Technology》 CAS 2009年第6期135-137,154,共4页
By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant ... By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform. 展开更多
关键词 backward propagation neural network Particle swarm algorithm Plant diseases and pests Early-warning model
下载PDF
Wireless location algorithm using digital broadcasting signals based on neural network 被引量:1
11
作者 柯炜 吴乐南 殷奎喜 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期394-398,共5页
In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. ... In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification. 展开更多
关键词 digital broadcasting signals neural network extended Kalman filter (EKF) backwards error propagation algorithm multilayer perceptron
下载PDF
基于GRU-BP算法的高精度动态物流称重系统
12
作者 康杰 《机电工程》 CAS 北大核心 2024年第6期1127-1134,共8页
针对动态物流秤测量精度对载重、采样频率、带速较为敏感的问题,提出了一种高精度动态物流称重系统。首先,采用三因素五水平正交试验法,结合皮尔逊相关性检验原则,使用低通巴特沃斯与卡尔曼滤波器对传感器压力信号进行了滤波降噪处理,... 针对动态物流秤测量精度对载重、采样频率、带速较为敏感的问题,提出了一种高精度动态物流称重系统。首先,采用三因素五水平正交试验法,结合皮尔逊相关性检验原则,使用低通巴特沃斯与卡尔曼滤波器对传感器压力信号进行了滤波降噪处理,并将加速度信号作为模型输入信号,进行了特征补偿;然后,基于深度学习算法,提出了一种改进的门控循环单元模型,在该模型采样区间内将压力与振动改写为时序化信号,并将其共同输入门控循环单元(GRU)模型;最后,对GRU模型进行了改进,对其结构输出了层堆叠误差反向传播神经网络(BP),有效加强了模型的非线性映射能力。研究结果表明:在各类传动速度及测试货物下,该模型的最大测量误差相对于同类型深度学习模型长短期记忆(LSTM)神经网络、循环神经网络(RNN)时序模型及传统数值平均模型的误差,依次降低了16.14%、27.14%、76%,可用于各类称重系统。 展开更多
关键词 深度学习 动态测量系统 门控循环单元 反向传播神经网络 振动补偿 长短期记忆神经网络 循环神经网络
下载PDF
Design of Robotic Visual Servo Control Based on Neural Network and Genetic Algorithm 被引量:9
13
作者 Hong-Bin Wang Mian Liu 《International Journal of Automation and computing》 EI 2012年第1期24-29,共6页
A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without req... A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control. 展开更多
关键词 Visual servo image Jacobian back propagation (bp neural network genetic algorithm robot control
下载PDF
Application of quantum neural networks in localization of acoustic emission 被引量:5
14
作者 Aidong Deng Li Zhao Wei Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期507-512,共6页
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca... Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more. 展开更多
关键词 acoustic emission(AE) LOCALIZATION quantum genetic algorithm(QGA) back propagation(bp neural network.
下载PDF
BFA BASED NEURAL NETWORK FOR IMAGE COMPRESSION 被引量:4
15
作者 Chu Ying Mi Hua +2 位作者 Ji Zhen Shao Zibo Q. H. Wu 《Journal of Electronics(China)》 2008年第3期405-408,共4页
A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are... A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly. 展开更多
关键词 Bacterial Foraging Algorithm (BFA) Artificial neural network (ANN) Back propagation(bp Image compression
下载PDF
Artificial Neural Network and Full Factorial Design Assisted AT-MRAM on Fe Oxides, Organic Materials, and Fe/Mn Oxides in Surficial Sediments 被引量:1
16
作者 GAO Qian WANG Zhi-zeng WANG Qian LI Shan-shan LI Yu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第6期944-948,共5页
Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surf... Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments. 展开更多
关键词 Back propagation(bp artificial neural network Full factorial design Fe/Mn oxide Organic material ATRAZINE Interaction
下载PDF
Predicting formation lithology from log data by using a neural network 被引量:6
17
作者 Wang Kexiong Zhang Laibin 《Petroleum Science》 SCIE CAS CSCD 2008年第3期242-246,共5页
In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the... In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the conventional back propagation (BP) model, an improved BP model was proposed, with main modifications of back propagation of error, self-adapting algorithm, and activation function, also a prediction program was developed. The improved BP model was successfully applied to predicting the lithology of formations to be drilled in the Kela-2 gas field. 展开更多
关键词 Kela-2 gas field neural network improved back-propagation (bp model log data lithology prediction
下载PDF
基于BP神经网络的耗占比预测研究 被引量:1
18
作者 陈瑶 于典 张晓斌 《中国医疗设备》 2024年第2期33-38,共6页
目的运用反向传播(Backward Propagation,BP)神经网络建立合适的耗占比预测模型,帮助医院管理部门评估各科室耗材使用是否合理。方法选取安徽医科大学第一附属医院2021年1月至2023年5月的运营数据构建数据集,通过训练集训练网络模型,通... 目的运用反向传播(Backward Propagation,BP)神经网络建立合适的耗占比预测模型,帮助医院管理部门评估各科室耗材使用是否合理。方法选取安徽医科大学第一附属医院2021年1月至2023年5月的运营数据构建数据集,通过训练集训练网络模型,通过验证集及测试集评价模型性能。结果建立BP神经网络模型并对耗占比进行预测,模型在验证集上的解释方差为0.998604,平均绝对误差为0.006219;在测试集上评价指标略有下降,解释方差为0.962396,平均绝对误差为0.027858,各评价指标仍优于其他模型。结论基于BP神经网络的耗占比预测模型可实现科室、总收入、药占比、出入院人次等指标的非线性关系描述,可对耗占比进行准确预测,为医院对各科室耗材的考核评估提供了量化的数据支撑。 展开更多
关键词 医用耗材 耗占比 反向传播神经网络 回归模型
下载PDF
Application of artificial neural network to calculation of solitary wave run-up 被引量:1
19
作者 You-xing WEI Deng-ting WANG Qing-jun LIU 《Water Science and Engineering》 EI CAS 2010年第3期304-312,共9页
The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a... The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up. 展开更多
关键词 solitary wave run-up artificial neural network back-propagation (bp network additional momentum method auto-adjusting learning factor
下载PDF
Estimation and Prediction of Gas Chromatography Retention Indices of Hydrocarbons in Straight-run Gasoline by Using Artificial Neural Network and Structural Coding Method
20
作者 YIN Chun sheng GUO Wei min +2 位作者 LIU Wei ZHAO Wei PAN Zhong xiao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2001年第1期31-40,共10页
The molecular structures of hydrocarbons in straight run gasoline were numerically coded. The nonlinear quantitative relationship(QSRR) between gas chromatography(GC) retention indices of the hydrocarbons and their m... The molecular structures of hydrocarbons in straight run gasoline were numerically coded. The nonlinear quantitative relationship(QSRR) between gas chromatography(GC) retention indices of the hydrocarbons and their molecular structures were established by using an error back propagation(BP) algorithm. The GC retention indices of 150 hydrocarbons were then predicted by removing 15 compounds(as a test set) and using the 135 remained molecules as a calibration set. Through this procedure, all the compounds in the whole data set were then predicted in groups of 15 compounds. The results obtained by BP with the correlation coefficient and the standard deviation 0 993 4 and 16 54, are satisfied. 展开更多
关键词 Structural encoding GC retention index neural network Error back propagation(bp)
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部