Kinesin is a stepping molecular motor travelling along the microtubule. It moves primarily in the plus end direction of the microtubule and occasionally in the minus-end, backward, direction. Recently, the backward st...Kinesin is a stepping molecular motor travelling along the microtubule. It moves primarily in the plus end direction of the microtubule and occasionally in the minus-end, backward, direction. Recently, the backward steps of kinesin under different loads and temperatures start to attract interests, and the relations among them are revealed. This paper aims to theoretically understand these relations observed in experiments. After introducing a backward pathway into the previous model of the ATPase cycle of kinesin movement, the dependence of the backward movement on the load and the temperature is explored through Monte Carlo simulation. Our results agree well with previous experiments.展开更多
Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices.In this study,LES and κ-ε models were developed for a specific geometrical configuration of b...Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices.In this study,LES and κ-ε models were developed for a specific geometrical configuration of backward-facing step (BFS).The simulation results were validated with particle image velocimetry (PIV) measurements and direct numerical simulation (DNS).This LES simulation was carried out with a Reynolds number of 9000 in a pressurized water tunnel with an expansion ratio of 2.00.The results indicate that the LES model can reveal largescale vortex motion although with a larger grid-cell size.However,the LES model tends to overestimate the top wall separation and the Reynolds stress components for the BFS flow simulation without a sufficiently fine grid.Overall,LES is a potential tool for simulating separated flow controlled by large-scale vortices.展开更多
The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coher...The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20.展开更多
The flow over a backward facing step (BFS) has been taken as a useful proto- type to investigate intrinsic mechanisms of separated flow with heat transfer. However, to date, the open literature on the effect of Rich...The flow over a backward facing step (BFS) has been taken as a useful proto- type to investigate intrinsic mechanisms of separated flow with heat transfer. However, to date, the open literature on the effect of Richardson number on entropy generation over the BFS is absent yet, although the flow pattern and heat transfer characteristic both will receive significant influence caused by the variation of Richardson number in many prac- tical applications, such as in microelectromechanical systems and aerocrafts. The effect of Richardson number on entropy generation in the BFS flow is reported in this paper for the first time. The entropy generation analysis is conducted through numerically solving the entropy generation equation. The velocity and temperature, which are the inputs of the entropy generation equation, are evaluated by the lattice Boltzmann method. It is found that the distributions of local entropy generation number and Bejan number are significantly influenced by the variation of Richardson number. The total entropy gen- eration number is a monotonic decreasing function of Richardson number, whereas the average Bejan number is a monotonic increasing function of Richardson number.展开更多
A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency ...A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency variations in the external time series of boundary conditions, a small time-step is required to solve the ODE system throughout the entire simulation period, which can lead to a high computational cost, slower response, and need for more memory resources. One possible strategy to overcome this problem is to dynamically adjust the time-step with respect to the system’s stiffness. Therefore, small time-steps can be applied when needed, and larger time-steps can be used when allowable. This paper presents a new algorithm for adjusting the dynamic time-step based on a BDF discretization method. The parameters used to dynamically adjust the size of the time-step can be optimally specified to result in a minimum computation time and reasonable accuracy for a particular case of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained from an activated sludge model (ASM) for biological wastewater treatment processes. The algorithm was tested for various solver parameters, and the optimum set of three adjustable parameters that represented minimum computation time was identified. In addition, the accuracy of the algorithm was evaluated for various sets of solver parameters.展开更多
Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy g...Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy generation distributions. The main aim of using baffles is to enhance the value of convection coefficient on the bottom wall. But the useful energy can be destroyed due to intrinsic irreversibilities in the flow by the baffle. In the present work, the amount of energy loss is estimated by the computation of entropy generation. The values of velocity and temperature which are the inputs of the entropy generation equation are obtained by the numerical solution of momentum and energy equations with blocked-off method using computational fluid dynamic technique. Discretized forms of the governing equations in the (x, y) plane are obtained by the control volume method and solved using the SIMPLE algorithm. Numerical expressions, in terms of Nusselt number, entropy generation number, Bejan number and coefficient of friction are derived in dimensionless form. Results show that although a baffle mounted onto the upper wall increases the magnitude of Nusselts number on the bottom wall, but a considerable increase in the amount of entropy generation number takes place because of this technique. For validation, the numerical results for the Nusselt number and entropy generation number are compared with theoretical findings by other investigators and reasonable agreement is found.展开更多
针对尾矿坝在线监测重建设、轻利用的现状,基于尾矿坝位移在线监测时间序列,通过多步逆向云变换算法(Multi-step Backward Cloud Transformation Algorithm Based on Sampling with Replacement,MBCT-SR)改进云模型,根据“3E_(n)原则”...针对尾矿坝在线监测重建设、轻利用的现状,基于尾矿坝位移在线监测时间序列,通过多步逆向云变换算法(Multi-step Backward Cloud Transformation Algorithm Based on Sampling with Replacement,MBCT-SR)改进云模型,根据“3E_(n)原则”和内外包络曲线确定在线监测位移的正常运行值,从而建立尾矿坝位移分级预警阈值模型,并利用某尾矿坝全球导航卫星(Global Navigation Satellite System,GNSS)技术表面位移在线监测数据进行实例验证。结果表明:该尾矿坝水平方向位移的黄、橙、红预警阈值分别为8.41 mm/d、12.94 mm/d、19.41 mm/d,呈现出坝体中间预警阈值最大、并由中间向两侧减小的空间变化规律;尾矿坝垂直方向位移的黄、橙、红预警阈值分别为16.56 mm/d、25.48 mm/d、38.22 mm/d,且随着子坝的堆积,预警阈值逐渐增大。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10334100 and 10674173)
文摘Kinesin is a stepping molecular motor travelling along the microtubule. It moves primarily in the plus end direction of the microtubule and occasionally in the minus-end, backward, direction. Recently, the backward steps of kinesin under different loads and temperatures start to attract interests, and the relations among them are revealed. This paper aims to theoretically understand these relations observed in experiments. After introducing a backward pathway into the previous model of the ATPase cycle of kinesin movement, the dependence of the backward movement on the load and the temperature is explored through Monte Carlo simulation. Our results agree well with previous experiments.
基金supported by the National Natural Science Foundation of China(Grant No.51379128)
文摘Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices.In this study,LES and κ-ε models were developed for a specific geometrical configuration of backward-facing step (BFS).The simulation results were validated with particle image velocimetry (PIV) measurements and direct numerical simulation (DNS).This LES simulation was carried out with a Reynolds number of 9000 in a pressurized water tunnel with an expansion ratio of 2.00.The results indicate that the LES model can reveal largescale vortex motion although with a larger grid-cell size.However,the LES model tends to overestimate the top wall separation and the Reynolds stress components for the BFS flow simulation without a sufficiently fine grid.Overall,LES is a potential tool for simulating separated flow controlled by large-scale vortices.
文摘The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20.
基金Project supported by the National Natural Science Foundation of China (Nos. 51176061 and51006043)the Research Foundation for Out standing Young Teachers of Huazhong University of Science and Technology (No. 2012QN168)the Research Fund for the Doctoral Program of Higher Education of China (No. 20100142120048)
文摘The flow over a backward facing step (BFS) has been taken as a useful proto- type to investigate intrinsic mechanisms of separated flow with heat transfer. However, to date, the open literature on the effect of Richardson number on entropy generation over the BFS is absent yet, although the flow pattern and heat transfer characteristic both will receive significant influence caused by the variation of Richardson number in many prac- tical applications, such as in microelectromechanical systems and aerocrafts. The effect of Richardson number on entropy generation in the BFS flow is reported in this paper for the first time. The entropy generation analysis is conducted through numerically solving the entropy generation equation. The velocity and temperature, which are the inputs of the entropy generation equation, are evaluated by the lattice Boltzmann method. It is found that the distributions of local entropy generation number and Bejan number are significantly influenced by the variation of Richardson number. The total entropy gen- eration number is a monotonic decreasing function of Richardson number, whereas the average Bejan number is a monotonic increasing function of Richardson number.
文摘A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency variations in the external time series of boundary conditions, a small time-step is required to solve the ODE system throughout the entire simulation period, which can lead to a high computational cost, slower response, and need for more memory resources. One possible strategy to overcome this problem is to dynamically adjust the time-step with respect to the system’s stiffness. Therefore, small time-steps can be applied when needed, and larger time-steps can be used when allowable. This paper presents a new algorithm for adjusting the dynamic time-step based on a BDF discretization method. The parameters used to dynamically adjust the size of the time-step can be optimally specified to result in a minimum computation time and reasonable accuracy for a particular case of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained from an activated sludge model (ASM) for biological wastewater treatment processes. The algorithm was tested for various solver parameters, and the optimum set of three adjustable parameters that represented minimum computation time was identified. In addition, the accuracy of the algorithm was evaluated for various sets of solver parameters.
文摘Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy generation distributions. The main aim of using baffles is to enhance the value of convection coefficient on the bottom wall. But the useful energy can be destroyed due to intrinsic irreversibilities in the flow by the baffle. In the present work, the amount of energy loss is estimated by the computation of entropy generation. The values of velocity and temperature which are the inputs of the entropy generation equation are obtained by the numerical solution of momentum and energy equations with blocked-off method using computational fluid dynamic technique. Discretized forms of the governing equations in the (x, y) plane are obtained by the control volume method and solved using the SIMPLE algorithm. Numerical expressions, in terms of Nusselt number, entropy generation number, Bejan number and coefficient of friction are derived in dimensionless form. Results show that although a baffle mounted onto the upper wall increases the magnitude of Nusselts number on the bottom wall, but a considerable increase in the amount of entropy generation number takes place because of this technique. For validation, the numerical results for the Nusselt number and entropy generation number are compared with theoretical findings by other investigators and reasonable agreement is found.