Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a ...Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a maximum principle on the assumption that the state equation contains time delay and the control domain is convex.The adjoint processes can be represented as the solutions of certain time-advanced stochastic differential equations in finite-dimensional spaces.Linear backward stochastic differential equation(BSDE)was first introduced by Bismut in[1],while general BSDE was given by Pardoux and Peng[2].Since then,the theory of BSDEs developed rapidly.The corresponding optimal control problems,whose states are driven by BSDEs,have also been widely studied by some authors,see[3]-[5].展开更多
Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we invest...Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we investigated and realized the first X-band backward traveling-wave(BTW)accelerating structure as the buncher for a VHEE facility.A method for calculating the parameters of single cell from the field distribution was introduced to simplify the design of the BTW structure.Time-domain circuit equations were applied to calculate the transient beam parameters of the buncher in the unsteady state.A prototype of the BTW structure with a thermionic cathode-diode electron gun was designed,fabricated,and tested at high power at the Tsinghua X-band high-power test stand.The structure successfully operated with 5-MW microwave pulses from the pulse compressor and outputted electron bunches with an energy of 8 MeV and a pulsed current of 108 mA.展开更多
An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.I...An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.In the initial phase,a WRP with adjustable resolution and sampling interval based on the object’s size is defined to capture detailed information from large 3D objects.The second phase employs an adaptive angular spectrum method(ASM)to efficiently compute the propagation from the large-sized WRP to the small-sized computer-generated hologram(CGH).The computation process is accelerated using CUDA and OptiX.Optical experiments confirm that the algorithm can generate high-quality holograms with shadow and occlusion effects at a resolution of 1024×1024 in 29 ms.展开更多
Dielectric resonator magnetoelectric dipole(DRMED)arrays with enhanced isolation,reduced cross-polarization,and backward radiation are proposed for base station(BS)applications.The proposed antenna comprises an elevat...Dielectric resonator magnetoelectric dipole(DRMED)arrays with enhanced isolation,reduced cross-polarization,and backward radiation are proposed for base station(BS)applications.The proposed antenna comprises an elevated dielectric resonator antenna(DRA)on a small metal plate above a sizeable common ground plane.The DRA is designed in its T Eδ11 mode,acting like a magnetic dipole.The surface current excited by the differential probes flowing on the small ground plane is equivalent to an electric dipole.Since these two equivalent dipoles are orthogonal,they have the magnetoelectric dipole characteristics with reduced backward radiation.Meanwhile,the small ground planes can be treated as decoupling structures to provide a neutralization path to cancel the original coupling path.A linearly-polarized 4-element prototype array was verified experimentally in previous work.Here,a dual-polarized DRMED antenna is presented to construct a 2-element and 4×4 array for BS applications.To investigate its MIMO performance,sophisticated multi-cell scenario simulations are carried out.By using the proposed dualpolarized DRMED array,the cellular system capacityis improved by 118.6%compared to a conventional DRA array.This significant MIMO system improvement is mainly due to the reduced backward radiation and,therefore,reduced inter-cell interferences.Measurements align well with the simulations.展开更多
The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were pe...The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.展开更多
The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.T...The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.The results show that the relative density of the wall is the lowest in samples,and that of the base is the highest.With increasing the billet height,more time is needed for relative density of the corner to reach the maximum value,and the relative densities in every region improve evidently with increasing the pressure.The tensile stress was simulated to be the largest at the corner,and the hot tearings were forecasted to mainly appear at the corner too.By employing proper billet height and pressure,the extruded samples consisted of fine and uniform microstructures,and can obtain excellent mechanical properties and Brinell hardness.展开更多
During multi-pass conventional spinning, roller paths combined with the forward and the backward pass are usually used to improve the material formability. In order to understand the backward spinning process properly...During multi-pass conventional spinning, roller paths combined with the forward and the backward pass are usually used to improve the material formability. In order to understand the backward spinning process properly, the backward roller paths of hemispherical parts with aluminum alloy 2024-O are analyzed. Finite element model with parameterized conventional spinning roller paths, which are based on quadratic Bezier curves, is developed to explore the evolution of the stress, strain and thinning during the backward processes. Analysis of the simulation results reveals stress and strain features of backward pass spinning. According to the findings, the application of the backward pass can obviously improve the uniformity of wall thickness. Furthermore, references of the parameters in future backward path design are provided.展开更多
As an efficient method of solving subgame-perfect Nash equilibrium,the backward induction is analyzed from an evolutionary point of view in this paper,replacing a player with a population and turning a game into a pop...As an efficient method of solving subgame-perfect Nash equilibrium,the backward induction is analyzed from an evolutionary point of view in this paper,replacing a player with a population and turning a game into a population game,which shows that equilibrium of a perfect information game is the unique evolutionarily stable outcome for dynamic models in the limit.展开更多
In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument...In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument where every element of the solution is forced to stay above the given stochastic process, i.e., multi-dimensional obstacle, respectively. We also give a kind of multi-dimensional comparison theorem for the reflected BSDE and then use it as the tool to prove an existence result for the multi-dimensional reflected BSDE where the coefficient is continuous and has linear growth.展开更多
Radially oriented Nd-Fe-B rings are prepared by backward extrusion of fine grained melt-spun powder. Melt- spun powder with the nominal composition of Nd30.5Febal.Co6.0Ga0.6A10.2B0.9 (wt%) is used as starting materi...Radially oriented Nd-Fe-B rings are prepared by backward extrusion of fine grained melt-spun powder. Melt- spun powder with the nominal composition of Nd30.5Febal.Co6.0Ga0.6A10.2B0.9 (wt%) is used as starting material. The effects of process variables, such as deformation temperature (Td), strain rate (ε) and height reduction (△h%), on the magnetic properties of the rings are investigated. A scanning electron microscope (SEM) equipped with an energy spectrum device is used to study the metallograph and microfracture of the extruded rings. The Br and (BH)max reach the optimum values at Td =800℃,ε= 0.01 mm/s, and △h% = 70%. It is found by SEM observations that the particle boundaries, which seemingly correspond to the interfaces of the starting melt-spun powders, emerge after the corrosion of metallography specimens. This is helpful for studying the effects of powder-powder interface on the local deformation and deformation homogeneity in the rings. For different spatial positions of the extruded rings, there are characteristic metallographies and microfractures. The upper end of the rings has the least deformation and worst texture, and therefore the worst magnetic properties. The magnetic properties in the radial direction increase slightly along the axis from the bottom to the middle, then steeply decrease at the upper end of the ring. The deformation and the formation-of-texturing processes are discussed. The deformation and the texturing formation of melt-spun Nd-Fe-B alloys probably involve grain boundary sliding and grain rotation, the solution-precipitation process and preferential growth of Nd2Fel4B nanograins along the easy growth a-axis.展开更多
In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equati...In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.展开更多
The influence of temperature on the flow behavior and rheological characteristics of an A356 alloy in the semi-solid state was investigated using backward extrusion process.Experiments were performed at 5 temperatures...The influence of temperature on the flow behavior and rheological characteristics of an A356 alloy in the semi-solid state was investigated using backward extrusion process.Experiments were performed at 5 temperatures and 4 different wall thicknesses.Viscosities were determined using the force-displacement graphs obtained form back extrusion tests.As observed experimentally,at a constant temperature,the increase of shear rate results in the decrease of alloy viscosity exponentially.Raising the temperature increases the liquid fraction hence reduces the semi-solid alloy viscosity.Metallographic and image analyses show that,because of low forming speed,liquid has time to escape from solid phase forward the sample wall.This condition is the main reason for the segregation phenomenon seen in the base and walls.Vickers hardness test on samples reveals that the hardness increases with the decrease of temperature and wall thickness.展开更多
In this paper, a new traffic flow model called the forward-backward velocity difference (FBVD) model based on the full velocity difference model is proposed to investigate the backward-looking effect by applying a mod...In this paper, a new traffic flow model called the forward-backward velocity difference (FBVD) model based on the full velocity difference model is proposed to investigate the backward-looking effect by applying a modified backward optimal velocity using generalized backward maximum speed. The FBVD model belongs to the family of microscopic models that consider spatiotemporally continuous formulations. Neutral stability conditions of the discrete car-following model are derived using the linear stability theory. The stability analysis results prove that the modified backward optimal velocity has a significant positive effect in stabilizing the traffic flow. Through nonlinear analysis, a kink-antikink solution is derived from the modified Korteweg-de Vries equation of the FBVD model to explain traffic congestion of the model. The validity of this theoretical model is checked using numerical results, according to which traffic jams were found to have been significantly diminished by the introduction of the modified backward optimal velocity.展开更多
We present a numerical method for solving the indefinite least squares problem. We first normalize the coefficient matrix. Then we compute the hyperbolic QR factorization of the normalized matrix. Finally we compute t...We present a numerical method for solving the indefinite least squares problem. We first normalize the coefficient matrix. Then we compute the hyperbolic QR factorization of the normalized matrix. Finally we compute the solution by solving several triangular systems. We give the first order error analysis to show that the method is backward stable. The method is more efficient than the backward stable method proposed by Chandrasekaran, Gu and Sayed.展开更多
A backward wave amplifier(BWA) in a terahertz regime with a novel slow-wave structure(SWS) composed of multi parallel grating pins inside a rectangular waveguide is analyzed. The multi-pin rectangular waveguide SW...A backward wave amplifier(BWA) in a terahertz regime with a novel slow-wave structure(SWS) composed of multi parallel grating pins inside a rectangular waveguide is analyzed. The multi-pin rectangular waveguide SWS possesses good performance and is compatible with micro-fabrication technologies. The dispersion and interaction impedance of the multipin SWS are presented. The stopbands of the modes cling together in a Brillouim zone. The SWS has a high interaction impedance that is suitable for the interaction of multi cylindrical beams. The design, which is based on three parallel pins supporting the wave–beam interaction with four cylindrical beams, is verified by three-dimensional particle-in-cell simulations. A BWA with the central frequency at 340 GHz is demonstrated, and the output power is more than 100 mW.A tuning frequency range of 15 GHz(333–348 GHz) is obtained with a gain of more than 20 dB.展开更多
Gleeble-3500 thermal simulator was applied to realize the rotary backward extrusion forming of Mg-13Gd-4Y-2Zn-0.5Zr(wt%)alloy at different circumferential strain rate from 0.009 s^(-1)to 0.027 s^(-1)at 400℃and the dy...Gleeble-3500 thermal simulator was applied to realize the rotary backward extrusion forming of Mg-13Gd-4Y-2Zn-0.5Zr(wt%)alloy at different circumferential strain rate from 0.009 s^(-1)to 0.027 s^(-1)at 400℃and the dynamic recrystallization mechanism and texture evolution were studied.The results show that the grain size of the alloy was obviously refined after rotary backward extrusion.As the circumferenlial strain rate increased,the dynamic recrystallization fraction gradually increased causing the grain size decreased and the distribution of microstructure became more uniform.At the same time,the texture of{0001},{10-10},{11-20}was weakened and the grain orientation distribution became more random.With the increase of circumferential strain rate,the discontinuous dynamic recrystallization mechanism became dominant,which promoted the weakening of texture and grain refinement of the alloy.展开更多
文摘Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a maximum principle on the assumption that the state equation contains time delay and the control domain is convex.The adjoint processes can be represented as the solutions of certain time-advanced stochastic differential equations in finite-dimensional spaces.Linear backward stochastic differential equation(BSDE)was first introduced by Bismut in[1],while general BSDE was given by Pardoux and Peng[2].Since then,the theory of BSDEs developed rapidly.The corresponding optimal control problems,whose states are driven by BSDEs,have also been widely studied by some authors,see[3]-[5].
基金supported by the National Natural Science Foundation of China(No.11922504).
文摘Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we investigated and realized the first X-band backward traveling-wave(BTW)accelerating structure as the buncher for a VHEE facility.A method for calculating the parameters of single cell from the field distribution was introduced to simplify the design of the BTW structure.Time-domain circuit equations were applied to calculate the transient beam parameters of the buncher in the unsteady state.A prototype of the BTW structure with a thermionic cathode-diode electron gun was designed,fabricated,and tested at high power at the Tsinghua X-band high-power test stand.The structure successfully operated with 5-MW microwave pulses from the pulse compressor and outputted electron bunches with an energy of 8 MeV and a pulsed current of 108 mA.
基金Project supported by the Special Project of Central Government Guiding Local Science and Technology Development in Beijing 2020(Grant No.Z201100004320006).
文摘An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.In the initial phase,a WRP with adjustable resolution and sampling interval based on the object’s size is defined to capture detailed information from large 3D objects.The second phase employs an adaptive angular spectrum method(ASM)to efficiently compute the propagation from the large-sized WRP to the small-sized computer-generated hologram(CGH).The computation process is accelerated using CUDA and OptiX.Optical experiments confirm that the algorithm can generate high-quality holograms with shadow and occlusion effects at a resolution of 1024×1024 in 29 ms.
基金supported by the National Key Research and Development Program of China under Grant 2020YFA0709800.
文摘Dielectric resonator magnetoelectric dipole(DRMED)arrays with enhanced isolation,reduced cross-polarization,and backward radiation are proposed for base station(BS)applications.The proposed antenna comprises an elevated dielectric resonator antenna(DRA)on a small metal plate above a sizeable common ground plane.The DRA is designed in its T Eδ11 mode,acting like a magnetic dipole.The surface current excited by the differential probes flowing on the small ground plane is equivalent to an electric dipole.Since these two equivalent dipoles are orthogonal,they have the magnetoelectric dipole characteristics with reduced backward radiation.Meanwhile,the small ground planes can be treated as decoupling structures to provide a neutralization path to cancel the original coupling path.A linearly-polarized 4-element prototype array was verified experimentally in previous work.Here,a dual-polarized DRMED antenna is presented to construct a 2-element and 4×4 array for BS applications.To investigate its MIMO performance,sophisticated multi-cell scenario simulations are carried out.By using the proposed dualpolarized DRMED array,the cellular system capacityis improved by 118.6%compared to a conventional DRA array.This significant MIMO system improvement is mainly due to the reduced backward radiation and,therefore,reduced inter-cell interferences.Measurements align well with the simulations.
基金Project(51275475)supported by the National Natural Science Foundation of ChinaProject(2014BY001)supported by the Department of Education in Zhejiang Province,ChinaProject(2014EP0110)supported by the Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology,Ministry of Education and Zhejiang Province,China
文摘The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.
基金Projects(50774026,50875059)supported by the National Natural Science Foundation of ChinaProject(20070420023)supported by the China Postdoctoral Science FoundationProject(2008AA03A239)supported by the High-tech Research and Development Program of China
文摘The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.The results show that the relative density of the wall is the lowest in samples,and that of the base is the highest.With increasing the billet height,more time is needed for relative density of the corner to reach the maximum value,and the relative densities in every region improve evidently with increasing the pressure.The tensile stress was simulated to be the largest at the corner,and the hot tearings were forecasted to mainly appear at the corner too.By employing proper billet height and pressure,the extruded samples consisted of fine and uniform microstructures,and can obtain excellent mechanical properties and Brinell hardness.
基金Project(2014CB046601)supported by the National Basic Research Program of ChinaProject(51675333)supported by the National Natural Science Foundation of China
文摘During multi-pass conventional spinning, roller paths combined with the forward and the backward pass are usually used to improve the material formability. In order to understand the backward spinning process properly, the backward roller paths of hemispherical parts with aluminum alloy 2024-O are analyzed. Finite element model with parameterized conventional spinning roller paths, which are based on quadratic Bezier curves, is developed to explore the evolution of the stress, strain and thinning during the backward processes. Analysis of the simulation results reveals stress and strain features of backward pass spinning. According to the findings, the application of the backward pass can obviously improve the uniformity of wall thickness. Furthermore, references of the parameters in future backward path design are provided.
文摘As an efficient method of solving subgame-perfect Nash equilibrium,the backward induction is analyzed from an evolutionary point of view in this paper,replacing a player with a population and turning a game into a population game,which shows that equilibrium of a perfect information game is the unique evolutionarily stable outcome for dynamic models in the limit.
基金the National Natural Science Foundation(10371067)the National Basic Research Program of China(973 Program,2007CB814904)+2 种基金the Natural Science Foundation of Shandong Province(Z2006A01)the Doctoral Fund of Education Ministry of China,and Youth Growth Foundation of Shandong University at Weihai, P.R.China. Xiao acknowledges the Natural Science Foundation of Shandong Province (ZR2009AQ017)Independent Innovation Foundation of Shandong University,IIFSDU
文摘In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument where every element of the solution is forced to stay above the given stochastic process, i.e., multi-dimensional obstacle, respectively. We also give a kind of multi-dimensional comparison theorem for the reflected BSDE and then use it as the tool to prove an existence result for the multi-dimensional reflected BSDE where the coefficient is continuous and has linear growth.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50804011 and 50931001)
文摘Radially oriented Nd-Fe-B rings are prepared by backward extrusion of fine grained melt-spun powder. Melt- spun powder with the nominal composition of Nd30.5Febal.Co6.0Ga0.6A10.2B0.9 (wt%) is used as starting material. The effects of process variables, such as deformation temperature (Td), strain rate (ε) and height reduction (△h%), on the magnetic properties of the rings are investigated. A scanning electron microscope (SEM) equipped with an energy spectrum device is used to study the metallograph and microfracture of the extruded rings. The Br and (BH)max reach the optimum values at Td =800℃,ε= 0.01 mm/s, and △h% = 70%. It is found by SEM observations that the particle boundaries, which seemingly correspond to the interfaces of the starting melt-spun powders, emerge after the corrosion of metallography specimens. This is helpful for studying the effects of powder-powder interface on the local deformation and deformation homogeneity in the rings. For different spatial positions of the extruded rings, there are characteristic metallographies and microfractures. The upper end of the rings has the least deformation and worst texture, and therefore the worst magnetic properties. The magnetic properties in the radial direction increase slightly along the axis from the bottom to the middle, then steeply decrease at the upper end of the ring. The deformation and the formation-of-texturing processes are discussed. The deformation and the texturing formation of melt-spun Nd-Fe-B alloys probably involve grain boundary sliding and grain rotation, the solution-precipitation process and preferential growth of Nd2Fel4B nanograins along the easy growth a-axis.
文摘In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.
文摘The influence of temperature on the flow behavior and rheological characteristics of an A356 alloy in the semi-solid state was investigated using backward extrusion process.Experiments were performed at 5 temperatures and 4 different wall thicknesses.Viscosities were determined using the force-displacement graphs obtained form back extrusion tests.As observed experimentally,at a constant temperature,the increase of shear rate results in the decrease of alloy viscosity exponentially.Raising the temperature increases the liquid fraction hence reduces the semi-solid alloy viscosity.Metallographic and image analyses show that,because of low forming speed,liquid has time to escape from solid phase forward the sample wall.This condition is the main reason for the segregation phenomenon seen in the base and walls.Vickers hardness test on samples reveals that the hardness increases with the decrease of temperature and wall thickness.
文摘In this paper, a new traffic flow model called the forward-backward velocity difference (FBVD) model based on the full velocity difference model is proposed to investigate the backward-looking effect by applying a modified backward optimal velocity using generalized backward maximum speed. The FBVD model belongs to the family of microscopic models that consider spatiotemporally continuous formulations. Neutral stability conditions of the discrete car-following model are derived using the linear stability theory. The stability analysis results prove that the modified backward optimal velocity has a significant positive effect in stabilizing the traffic flow. Through nonlinear analysis, a kink-antikink solution is derived from the modified Korteweg-de Vries equation of the FBVD model to explain traffic congestion of the model. The validity of this theoretical model is checked using numerical results, according to which traffic jams were found to have been significantly diminished by the introduction of the modified backward optimal velocity.
文摘We present a numerical method for solving the indefinite least squares problem. We first normalize the coefficient matrix. Then we compute the hyperbolic QR factorization of the normalized matrix. Finally we compute the solution by solving several triangular systems. We give the first order error analysis to show that the method is backward stable. The method is more efficient than the backward stable method proposed by Chandrasekaran, Gu and Sayed.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339801)the National High Technology Research and Development Program of China(Grant No.G060104012AA8122007B)
文摘A backward wave amplifier(BWA) in a terahertz regime with a novel slow-wave structure(SWS) composed of multi parallel grating pins inside a rectangular waveguide is analyzed. The multi-pin rectangular waveguide SWS possesses good performance and is compatible with micro-fabrication technologies. The dispersion and interaction impedance of the multipin SWS are presented. The stopbands of the modes cling together in a Brillouim zone. The SWS has a high interaction impedance that is suitable for the interaction of multi cylindrical beams. The design, which is based on three parallel pins supporting the wave–beam interaction with four cylindrical beams, is verified by three-dimensional particle-in-cell simulations. A BWA with the central frequency at 340 GHz is demonstrated, and the output power is more than 100 mW.A tuning frequency range of 15 GHz(333–348 GHz) is obtained with a gain of more than 20 dB.
基金the National Natural Science Foundation of China(Grant No.51775520)the National Key Research and Development Plan(Grant No.2016YFB0301103-3).
文摘Gleeble-3500 thermal simulator was applied to realize the rotary backward extrusion forming of Mg-13Gd-4Y-2Zn-0.5Zr(wt%)alloy at different circumferential strain rate from 0.009 s^(-1)to 0.027 s^(-1)at 400℃and the dynamic recrystallization mechanism and texture evolution were studied.The results show that the grain size of the alloy was obviously refined after rotary backward extrusion.As the circumferenlial strain rate increased,the dynamic recrystallization fraction gradually increased causing the grain size decreased and the distribution of microstructure became more uniform.At the same time,the texture of{0001},{10-10},{11-20}was weakened and the grain orientation distribution became more random.With the increase of circumferential strain rate,the discontinuous dynamic recrystallization mechanism became dominant,which promoted the weakening of texture and grain refinement of the alloy.