The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied....The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied. The results show that the extraction rates of Fe, Cu and Zn from the slag reach 86.7%, 90.3% and 66.7% after adsorbed bacteria sterilize, while those with adsorbed bacteria are 91.9%, 96.0% and 84.5% in conditions of pulp density 2%, pH 1.0, temperature 65 °C and stirring rate 120 r/min, respectively. Some stretching peaks of functional groups from bacterial secretes on the bioleached residue surface, such as 1007 cm-1 and 1193 cm-1, turn up through FI-IR analysis and indirectly reveal the presence of the adsorbed bacteria on the slag particles surface. Besides, the corrosion of zinc smelting slag is enhanced by bacteria according to the characteristics of cyclic voltametry and Tafel curves in bioleaching system.展开更多
X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of ...X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.展开更多
Bioleaching Xiangjiang River alkaline sediment contaminated by multiple heavy metals was investigated. Multiple metals in alkaline sediment possess significant toxicity to aquatic organisms or humans and will greatly ...Bioleaching Xiangjiang River alkaline sediment contaminated by multiple heavy metals was investigated. Multiple metals in alkaline sediment possess significant toxicity to aquatic organisms or humans and will greatly inhibit bioleaching. The bioleaching method using autotrophic bacteria mixed with heterotrophic bacteria can solve this problem successfully. The experiment results showed that bioleaching efficiencies of Zn, Mn, Cu, and Cd were 95.2 %, 94.2 %, 90.1 %, and 84.4 %, respectively. Moreover, the changes of heavy metal concentrations in different fractions in contaminated sediment before and after bioleaching were analyzed by selective sequential extraction, and it was discovered that the main fractions of Zn, Mn, Cu and Cd after bioleaching are Fe-Mn oxide, organic associated form and a residual form. Its biotoxicity decreased greatly. The bioleaching heavy metals from sediment using autotrophic bacteria combined with heterotrophic bacteria can effectively improve the bioleaching efficiency and reduce toxicity.展开更多
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs...The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.展开更多
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri...Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.展开更多
In this work, low-grade copper sulfide mine has been treated by the bioleaching process using native cultures of Acidithiobacillus ferrooxidans. The bioleaching experiments were carded out in shake flasks at pH 2.0, 1...In this work, low-grade copper sulfide mine has been treated by the bioleaching process using native cultures of Acidithiobacillus ferrooxidans. The bioleaching experiments were carded out in shake flasks at pH 2.0, 180 r.min^-1 and 30℃ for mesophilic bacteria The conductivity of copper bioleaching liquid was determined by the electric conductivity method at temperatures ranging from 298 K to 313 K. The ionic activity coefficients were estimated using Debye-Hucker and Osager-Falkenlagen equations. Meanwhile, the effects of temperature and concentrtion on the mean ionic activity coefficients were discussed. The relative partial molar free energies, enthalpies and entropies of copper teaching solution at above experimental temperatures were calculated. The behaviors of change of relative partial molar quantities were discussed on the basis of electrolytic solution theory. Simultaneously, the thermodynamic characters of bioleaching solution with and without mesophilic bacteria were compared. The existence of mesophilic bacteria changed the Fe^3+/Fe^2+ ratio, which resulted in the difference of ionic interaction. The experimental data show that the determination of the thermodynamic properties during the bioleaching processes should be important.展开更多
Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate...Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate aeration improved bacterial concentrations and leaching efficiencies.The highest bacterial concentration and Cu^(2+)concentration after 14-d leaching were 7.61×10^(7) cells·mL^(−1) and 704.9 mg·L^(−1),respectively,at aeration duration of 4 h·d^(−1).The attached bacteria played a significant role during bioleaching from 1 to 7 d.However,free bacteria dominated the bioleaching processes from 8 to 14 d.This phenomenon was mainly caused by the formation of passivation layer through Fe3+hydrolysis along with bioleaching,which inhibited the contact between the attached bacteria and ore.Meanwhile,16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans on the bioleaching process.The results demonstrate the importance of free and attached bacteria in bioleaching.展开更多
Batch and column experiments were conducted to determine whether zerovalent iron (ZVI) and sulfate reducing bacteria (SRB) can function synergistically and accelerate pollutant removal. Batch experiments suggest that ...Batch and column experiments were conducted to determine whether zerovalent iron (ZVI) and sulfate reducing bacteria (SRB) can function synergistically and accelerate pollutant removal. Batch experiments suggest that combining ZVI with SRB can enhance the removal of U(Ⅵ) synergistically. The removal rate of U(Ⅵ) in the ZVI+SRB combining system is obviously higher than the total rate of ZVI system and SRB system with a difference of 13.4% at t=2 h and 29.9% at t=4 h. Column experiments indicate that the reactor filled with both ZVI and SRB biofilms is of better performance than the SRB bioreactor in wastewater basification, desulfurization and U(Ⅵ) fixation. The results imply that the ZVI+SRB permeable reactive barrier may be a promising method for treating subsurface uranium contamination.展开更多
Bioleaching experiments combined with X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD)and scanning electron microscopy(SEM)were conducted to investigate three kinds of bornites from different regions leach...Bioleaching experiments combined with X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD)and scanning electron microscopy(SEM)were conducted to investigate three kinds of bornites from different regions leached by moderately thermophilic mixed bacteria of Leptospirillum ferriphilum YSK,Acidithiobacillus caldus D1 and Sulfobacillus thermosulfidooxidans ST.The results of bioleaching experiments showed that the leaching efficiency and the redox potential were significantly increased.The copper extraction efficiencies of three kinds of bornite maintained rapid growth until around the 12th day and no longer increased after the 18th,reaching 83.7%,96.5%and 86.6%,respectively.The XRD results of the leaching residue indicated that three kinds of bornites all produced jarosite in the late stage of leaching,and the leaching residues from of Daye Museum and Yunnan Geological Museum contained a mass of elemental sulfur.XPS analysis and scanning electron microscopy experiments showed that the surface of mineral particles was jarosite and the copper in the leaching residue was almost dissolved.展开更多
The effect of process parameters (pH, pulp density, inoculum volume, ferrous content, particle size) on the rate of copper solubilization was analyzed respectively through bioleaching tests with mixed bacteria in sh...The effect of process parameters (pH, pulp density, inoculum volume, ferrous content, particle size) on the rate of copper solubilization was analyzed respectively through bioleaching tests with mixed bacteria in shake flasks. These results show that the optimal process parameters are: pH, 1.50-1.80; pulp density, 5wt%; inoculum volume, 10vol%; ferrous content, 2g·L^-1; particle size, 〈0.076 mm. Furthermore, when the pH value is below 1.50 in leaching solution, the iron precipitated can be reduced to a great extent, but it shows low bacterial activity at this pH. Finally, it is emphasized that the optimal parameters are also determined by economical benefit.展开更多
Copper,an essential metal for the energy transition,is primarily obtained from chalcopyrite through hydrometallurgical and pyrometallurgical methods.The risks and harmful impacts of these processes pose significant co...Copper,an essential metal for the energy transition,is primarily obtained from chalcopyrite through hydrometallurgical and pyrometallurgical methods.The risks and harmful impacts of these processes pose significant concerns for environmental and human safety,highlighting the need for more efficient and eco-friendly hydrometallurgical methods.This review article emphasizes current pro-cesses such as oxidative leaching,bioleaching,and pressure leaching that have demonstrated efficiency in overcoming the complicated chalcopyrite network.Oxidative leaching operates under benign conditions within the leaching media;nevertheless,the introduction of oxidizing agents provides benefits and advantages.Bioleaching,a non-aggressive method,has shown a gradual increase in copper extrac-tion efficiency and has been explored using both primary and secondary sources.Pressure leaching,known for its effectiveness and se-lectivity in copper extraction,is becoming commercially more viable with increased research investments.This research also provides im-portant data for advancing future research in the field.展开更多
To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study invest...To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study investigates the features of P and F in PG,and explores the decomposition of PF using hydrofluoric acid(HF)in the sulfuric acid system for K leaching and leaching of P and F in PG.The impact factors such as sulfuric acid concentration,reaction temperature,reaction time,material ratio(PG/PF),liquid–solid ratio,PF particle size,and PF calcination temperature on the leaching of P and K is systematically investigated in this paper.The results show that under optimal conditions,the leaching rate of K and P reach more than 93%and 96%,respectively.Kinetics study using shrinking core model(SCM)indicates two significant stages with internal diffusion predominantly controlling the leaching of K.The apparent activation energies of these two stages are 11.92 kJ·mol^(-1)and 11.55 kJ·mol^(-1),respectively.展开更多
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration...The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels.展开更多
The elementary and phase analysis of discarded copper ores from Yongping of China has been performed. The experi- ments of extracting copper from the discarded copper ores were done with the mixed bacteria obtained th...The elementary and phase analysis of discarded copper ores from Yongping of China has been performed. The experi- ments of extracting copper from the discarded copper ores were done with the mixed bacteria obtained through a series of enrichment, separation, domestication and combination tests. The results show that in the process of bioleaching, the pH value rises at first and drops gradually. The Eh value keeps rising along with the time and the appropriate Eh value varying between 750 and 800 mV will benefit the bioleaching copper. The high concentration of ferric ions is detrimental to the bioleaching copper. The results of bioleaching copper are good. That is, the copper recovery is 31.8% after 27 days.展开更多
Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well ...Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.展开更多
To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparat...To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparation of calcium carbonate” was proposed.In this study,the influences of process conditions on the leaching rates of calcium,magnesium,aluminum,and iron and the phases of the leaching residue were investigated for the leaching process.The experimental results show that the HCl solution could selectively leach the elements from the titanium-containing blast furnace slag.The better leaching conditions are the HCl solution concentration of 4 mol/L,the leaching time of 30 min,the ratio of liquid volume to solid gas of 10 mL/g,and the stirring paddle speed of 300 r/min.Under the conditions,the leaching rates of calcium,magnesium,aluminum,and iron can reach 85.87%,73.41%,81.35%,and 59.08%,and the leaching rate of titanium is 10.71%.The iron and the aluminum are removed from the leachate to obtain iron-aluminum water purification agents,and the magnesium is removed from the leachate to obtain magnesium hydroxide.The leaching residue phase is dominated by perovskite,followed by magnesium silicate and tricalcium aluminate,and the titaniumrich material could be obtained from the leaching residue by desiliconization.展开更多
Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals...Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals besides in the sequestration of CO_(2).About 20 Indian coals having complexly distributed moderate to high ash contents were sequentially treated with various alkali–acid such as NaOH-HCl,HF,HCl,HCl-HF,and NaOH-HCl-HF leaching.This aimed to establish and design the best stepwise sequential process for the highest degree of demineralisation through a chemical leaching process.Kinetics and process intensification studies were carried out.More than 80%demineralisation of Madhaipur and Neemcha coals was observed using the best sequential treatment designed presently.The repeated stepwise treatment of the alkali and the acid was also studied,which was found to significantly enhance the degree of demineralisation of coals.The integrated process of alkali–acid leaching followed by solvent extraction(Organo-refining)and vice versa of the treated coal was also studied for producing cleaner coals.展开更多
The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient ...The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient development of molybdenum concentrate resources,this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching.Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate.The effects of roasting temperature,holding time,and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na_(2)MoO_(4)·2H_(2)O) were investigated.Under the optimal process conditions:roasting temperature of 700℃,holding time of 110 min,and power-to-mass ratio of 110 W/g,the molybdenum state of existence was converted from MoS_(2) to Mo O3.The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated,the optimal leaching conditions include a solution concentration of 2.5 mol/L,a liquid-to-solid ratio of 2 mL/g,a leaching temperature of 60℃,and leaching solution termination at pH 8.The optimum conditions result in a leaching rate of sodium molybdate of 96.24%.Meanwhile,the content of sodium molybdate reaches 94.08wt%after leaching and removing impurities.Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution.This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate,which provides a new idea for the highvalue utilization of molybdenum concentrate.展开更多
A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in th...A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.展开更多
The column bioleaching of copper flotation tailings was comparatively investigated using layered heap construction method(LM),agglomerate heap construction method(AM),and pellets-sintering heap construction method(PM)...The column bioleaching of copper flotation tailings was comparatively investigated using layered heap construction method(LM),agglomerate heap construction method(AM),and pellets-sintering heap construction method(PM).The bacterial communities of free,attached,weakly-attached,and strongly-attached microbes in the later bioleaching stage were investigated.In AM group,the addition of lump sulphide ore resulted in the low leachate pH,high ferric iron concentration,and rapid microbial adsorption,which obtained the maximum copper extraction(60.1%)compared with LM(54.6%)and PM(43.9%)groups.The relative abundance of dominant genera and microbial communities of different microbiota underwent changes in three heap construction methods.The alpha-diversity indexes of attached,weakly-attached,and strongly-attached microbes were different,while no significant change was observed in free bacteria.The variation of whole bacterial community was significantly associated with solution pH,total iron,and ferric iron concentrations.Pearson correlation analysis and partial least square path model both indicated that attached bacteria made larger contribution to the copper extraction of tailings.展开更多
基金Project (41271330) supported by the National Natural Science Foundation of China
文摘The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied. The results show that the extraction rates of Fe, Cu and Zn from the slag reach 86.7%, 90.3% and 66.7% after adsorbed bacteria sterilize, while those with adsorbed bacteria are 91.9%, 96.0% and 84.5% in conditions of pulp density 2%, pH 1.0, temperature 65 °C and stirring rate 120 r/min, respectively. Some stretching peaks of functional groups from bacterial secretes on the bioleached residue surface, such as 1007 cm-1 and 1193 cm-1, turn up through FI-IR analysis and indirectly reveal the presence of the adsorbed bacteria on the slag particles surface. Besides, the corrosion of zinc smelting slag is enhanced by bacteria according to the characteristics of cyclic voltametry and Tafel curves in bioleaching system.
基金Projects(51374248,51320105006)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595)supported by the Program for New Century Excellent Talents in University,ChinaProject(2014T70692)supported by China Postdoctoral Science Foundation
文摘X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.
基金Projects(51174239,30700008)supported by the National Natural Science Foundation of ChinaProjects(20090461028,201003526)supported by China Postdoctoral Science Foundation
文摘Bioleaching Xiangjiang River alkaline sediment contaminated by multiple heavy metals was investigated. Multiple metals in alkaline sediment possess significant toxicity to aquatic organisms or humans and will greatly inhibit bioleaching. The bioleaching method using autotrophic bacteria mixed with heterotrophic bacteria can solve this problem successfully. The experiment results showed that bioleaching efficiencies of Zn, Mn, Cu, and Cd were 95.2 %, 94.2 %, 90.1 %, and 84.4 %, respectively. Moreover, the changes of heavy metal concentrations in different fractions in contaminated sediment before and after bioleaching were analyzed by selective sequential extraction, and it was discovered that the main fractions of Zn, Mn, Cu and Cd after bioleaching are Fe-Mn oxide, organic associated form and a residual form. Its biotoxicity decreased greatly. The bioleaching heavy metals from sediment using autotrophic bacteria combined with heterotrophic bacteria can effectively improve the bioleaching efficiency and reduce toxicity.
基金supported by Key R&D Program of Zhejiang Province,China (No.2022C03061)the National Natural Science Foundation of China (No.52074204)the Fundamental Research Funds for the Central Universities (No.2023-vb-032).
文摘The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.
基金financially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Nos.52104395 and 52304365)the Science and Technology Planning Project of Guangzhou,China(Nos.202102021080 and 2024A04J10006)+1 种基金the National Key R&D Program of China(No.2021YFC2902605)the Natural Science Foundation of Guangdong Province,China(Nos.2023A1515030145 and 2023A1515011847)。
文摘Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.
基金the National Basic Research Program of China (No. 2004CB619206).
文摘In this work, low-grade copper sulfide mine has been treated by the bioleaching process using native cultures of Acidithiobacillus ferrooxidans. The bioleaching experiments were carded out in shake flasks at pH 2.0, 180 r.min^-1 and 30℃ for mesophilic bacteria The conductivity of copper bioleaching liquid was determined by the electric conductivity method at temperatures ranging from 298 K to 313 K. The ionic activity coefficients were estimated using Debye-Hucker and Osager-Falkenlagen equations. Meanwhile, the effects of temperature and concentrtion on the mean ionic activity coefficients were discussed. The relative partial molar free energies, enthalpies and entropies of copper teaching solution at above experimental temperatures were calculated. The behaviors of change of relative partial molar quantities were discussed on the basis of electrolytic solution theory. Simultaneously, the thermodynamic characters of bioleaching solution with and without mesophilic bacteria were compared. The existence of mesophilic bacteria changed the Fe^3+/Fe^2+ ratio, which resulted in the difference of ionic interaction. The experimental data show that the determination of the thermodynamic properties during the bioleaching processes should be important.
基金This work was supported by National Science Foundation for Excellent Young Scholars,China(No.51722401)Key Project of National Natural Science Foundation,China(No.51734001)Fundamental Research Funds for the Central Universities(No.FRF-TP-18-003C1).
文摘Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate aeration improved bacterial concentrations and leaching efficiencies.The highest bacterial concentration and Cu^(2+)concentration after 14-d leaching were 7.61×10^(7) cells·mL^(−1) and 704.9 mg·L^(−1),respectively,at aeration duration of 4 h·d^(−1).The attached bacteria played a significant role during bioleaching from 1 to 7 d.However,free bacteria dominated the bioleaching processes from 8 to 14 d.This phenomenon was mainly caused by the formation of passivation layer through Fe3+hydrolysis along with bioleaching,which inhibited the contact between the attached bacteria and ore.Meanwhile,16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans on the bioleaching process.The results demonstrate the importance of free and attached bacteria in bioleaching.
基金Project(kzcx2-yw-135-2) supported by Knowledge Innovational Program of Chinese Academy of SciencesProject(08B07) supported by Science Foundation of Hengyang Normal University
文摘Batch and column experiments were conducted to determine whether zerovalent iron (ZVI) and sulfate reducing bacteria (SRB) can function synergistically and accelerate pollutant removal. Batch experiments suggest that combining ZVI with SRB can enhance the removal of U(Ⅵ) synergistically. The removal rate of U(Ⅵ) in the ZVI+SRB combining system is obviously higher than the total rate of ZVI system and SRB system with a difference of 13.4% at t=2 h and 29.9% at t=4 h. Column experiments indicate that the reactor filled with both ZVI and SRB biofilms is of better performance than the SRB bioreactor in wastewater basification, desulfurization and U(Ⅵ) fixation. The results imply that the ZVI+SRB permeable reactive barrier may be a promising method for treating subsurface uranium contamination.
基金Project(51974363)supported by the National Natural Science Foundation of China。
文摘Bioleaching experiments combined with X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD)and scanning electron microscopy(SEM)were conducted to investigate three kinds of bornites from different regions leached by moderately thermophilic mixed bacteria of Leptospirillum ferriphilum YSK,Acidithiobacillus caldus D1 and Sulfobacillus thermosulfidooxidans ST.The results of bioleaching experiments showed that the leaching efficiency and the redox potential were significantly increased.The copper extraction efficiencies of three kinds of bornite maintained rapid growth until around the 12th day and no longer increased after the 18th,reaching 83.7%,96.5%and 86.6%,respectively.The XRD results of the leaching residue indicated that three kinds of bornites all produced jarosite in the late stage of leaching,and the leaching residues from of Daye Museum and Yunnan Geological Museum contained a mass of elemental sulfur.XPS analysis and scanning electron microscopy experiments showed that the surface of mineral particles was jarosite and the copper in the leaching residue was almost dissolved.
基金This study is supported by the Educational Science Fund of Jiangxi Province, China (No.200202).
文摘The effect of process parameters (pH, pulp density, inoculum volume, ferrous content, particle size) on the rate of copper solubilization was analyzed respectively through bioleaching tests with mixed bacteria in shake flasks. These results show that the optimal process parameters are: pH, 1.50-1.80; pulp density, 5wt%; inoculum volume, 10vol%; ferrous content, 2g·L^-1; particle size, 〈0.076 mm. Furthermore, when the pH value is below 1.50 in leaching solution, the iron precipitated can be reduced to a great extent, but it shows low bacterial activity at this pH. Finally, it is emphasized that the optimal parameters are also determined by economical benefit.
基金the Fundação de Amparo àPesquisa do Estado de São Paulo and Capes(grants:2019/11866-5,2020/00493-0,2021/14842-0,and 2023/01032-5 São Paulo Research Foundation)for financial support.
文摘Copper,an essential metal for the energy transition,is primarily obtained from chalcopyrite through hydrometallurgical and pyrometallurgical methods.The risks and harmful impacts of these processes pose significant concerns for environmental and human safety,highlighting the need for more efficient and eco-friendly hydrometallurgical methods.This review article emphasizes current pro-cesses such as oxidative leaching,bioleaching,and pressure leaching that have demonstrated efficiency in overcoming the complicated chalcopyrite network.Oxidative leaching operates under benign conditions within the leaching media;nevertheless,the introduction of oxidizing agents provides benefits and advantages.Bioleaching,a non-aggressive method,has shown a gradual increase in copper extrac-tion efficiency and has been explored using both primary and secondary sources.Pressure leaching,known for its effectiveness and se-lectivity in copper extraction,is becoming commercially more viable with increased research investments.This research also provides im-portant data for advancing future research in the field.
基金jointly supported by the National Key Research and Development Program of China (2019YFC1905800)the National Key Research & Development Program of China (2018YFC1903500)+4 种基金the commercial project by Beijing Zhong Dian Hua Yuan Environment Protection Technology Co., Ltd. (E01211200005)the Regional key projects of the science and technology service network program (STS program) of the Chinese Academy of Sciences (KFJ-STS-QYZD-153)the Ningbo Science and Technology Innovation Key Projects (2020Z099, 2022Z028)the Ningbo Municipal Commonweal Key Program (2019C10033)the support of Mineral Resources Analytical and Testing Center, Institute of Process Engineering, Chinese Academy of Science
文摘To achieve the resource utilization of solid waste phosphogypsum(PG)and tackle the problem of utilizing potassium feldspar(PF),a coupled synergistic process between PG and PF is proposed in this paper.The study investigates the features of P and F in PG,and explores the decomposition of PF using hydrofluoric acid(HF)in the sulfuric acid system for K leaching and leaching of P and F in PG.The impact factors such as sulfuric acid concentration,reaction temperature,reaction time,material ratio(PG/PF),liquid–solid ratio,PF particle size,and PF calcination temperature on the leaching of P and K is systematically investigated in this paper.The results show that under optimal conditions,the leaching rate of K and P reach more than 93%and 96%,respectively.Kinetics study using shrinking core model(SCM)indicates two significant stages with internal diffusion predominantly controlling the leaching of K.The apparent activation energies of these two stages are 11.92 kJ·mol^(-1)and 11.55 kJ·mol^(-1),respectively.
文摘The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels.
文摘The elementary and phase analysis of discarded copper ores from Yongping of China has been performed. The experi- ments of extracting copper from the discarded copper ores were done with the mixed bacteria obtained through a series of enrichment, separation, domestication and combination tests. The results show that in the process of bioleaching, the pH value rises at first and drops gradually. The Eh value keeps rising along with the time and the appropriate Eh value varying between 750 and 800 mV will benefit the bioleaching copper. The high concentration of ferric ions is detrimental to the bioleaching copper. The results of bioleaching copper are good. That is, the copper recovery is 31.8% after 27 days.
基金financial support received from the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (Grant No.Z019011)the Shandong Provincial Natural Science Foundation (Grant No.ZR2020QE112)+1 种基金the National Natural Science Foundation of China (No.51874273)the Excellent Young Scientists Fund Program of National Natural Science Foundation of China (No.52122403)。
文摘Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.
基金Funded by the National Natural Science Foundation of China Youth Fund(No.52204419)the Liaoning Provincial Natural Science Foundation(No.2022-BS-076)the Guangxi Science and Technology Major Project(No.2021AA12013)。
文摘To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparation of calcium carbonate” was proposed.In this study,the influences of process conditions on the leaching rates of calcium,magnesium,aluminum,and iron and the phases of the leaching residue were investigated for the leaching process.The experimental results show that the HCl solution could selectively leach the elements from the titanium-containing blast furnace slag.The better leaching conditions are the HCl solution concentration of 4 mol/L,the leaching time of 30 min,the ratio of liquid volume to solid gas of 10 mL/g,and the stirring paddle speed of 300 r/min.Under the conditions,the leaching rates of calcium,magnesium,aluminum,and iron can reach 85.87%,73.41%,81.35%,and 59.08%,and the leaching rate of titanium is 10.71%.The iron and the aluminum are removed from the leachate to obtain iron-aluminum water purification agents,and the magnesium is removed from the leachate to obtain magnesium hydroxide.The leaching residue phase is dominated by perovskite,followed by magnesium silicate and tricalcium aluminate,and the titaniumrich material could be obtained from the leaching residue by desiliconization.
文摘Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals besides in the sequestration of CO_(2).About 20 Indian coals having complexly distributed moderate to high ash contents were sequentially treated with various alkali–acid such as NaOH-HCl,HF,HCl,HCl-HF,and NaOH-HCl-HF leaching.This aimed to establish and design the best stepwise sequential process for the highest degree of demineralisation through a chemical leaching process.Kinetics and process intensification studies were carried out.More than 80%demineralisation of Madhaipur and Neemcha coals was observed using the best sequential treatment designed presently.The repeated stepwise treatment of the alkali and the acid was also studied,which was found to significantly enhance the degree of demineralisation of coals.The integrated process of alkali–acid leaching followed by solvent extraction(Organo-refining)and vice versa of the treated coal was also studied for producing cleaner coals.
基金financially supported by the National Natural Science Foundation of China (No.51964046)。
文摘The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient development of molybdenum concentrate resources,this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching.Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate.The effects of roasting temperature,holding time,and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na_(2)MoO_(4)·2H_(2)O) were investigated.Under the optimal process conditions:roasting temperature of 700℃,holding time of 110 min,and power-to-mass ratio of 110 W/g,the molybdenum state of existence was converted from MoS_(2) to Mo O3.The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated,the optimal leaching conditions include a solution concentration of 2.5 mol/L,a liquid-to-solid ratio of 2 mL/g,a leaching temperature of 60℃,and leaching solution termination at pH 8.The optimum conditions result in a leaching rate of sodium molybdate of 96.24%.Meanwhile,the content of sodium molybdate reaches 94.08wt%after leaching and removing impurities.Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution.This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate,which provides a new idea for the highvalue utilization of molybdenum concentrate.
基金supported by the National Natural Science Foundation of China(51834008,52022109,52274307,and 21804319)National Key Research and Development Program of China(2021YFC2901100)+1 种基金Science Foundation of China University of Petroleum,Beijing(2462022QZDX008,2462021QNX2010,2462020YXZZ019 and 2462020YXZZ016)State Key Laboratory of Heavy Oil Processing(HON-KFKT2022-10).
文摘A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.
基金financial supports from the National Key R&D Program of China(No.2018YFC1801804)the Shandong Provincial Natural Science Foundation,China(Nos.ZR2020QD120 and ZR2018LD001)Project of Introducing and Cultivating Young Talent in the Universities of Shandong Province,China(No.QC2019YY144)。
文摘The column bioleaching of copper flotation tailings was comparatively investigated using layered heap construction method(LM),agglomerate heap construction method(AM),and pellets-sintering heap construction method(PM).The bacterial communities of free,attached,weakly-attached,and strongly-attached microbes in the later bioleaching stage were investigated.In AM group,the addition of lump sulphide ore resulted in the low leachate pH,high ferric iron concentration,and rapid microbial adsorption,which obtained the maximum copper extraction(60.1%)compared with LM(54.6%)and PM(43.9%)groups.The relative abundance of dominant genera and microbial communities of different microbiota underwent changes in three heap construction methods.The alpha-diversity indexes of attached,weakly-attached,and strongly-attached microbes were different,while no significant change was observed in free bacteria.The variation of whole bacterial community was significantly associated with solution pH,total iron,and ferric iron concentrations.Pearson correlation analysis and partial least square path model both indicated that attached bacteria made larger contribution to the copper extraction of tailings.