期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A metabolite from commensal Candida albicans enhances the bactericidal activity of macrophages and protects against sepsis 被引量:1
1
作者 Peng Gu Ruofan Liu +16 位作者 Qin Yang Li Xie Rongjuan Wei Jiaxin Li Fengyi Mei Tao Chen Zhenhua Zeng Yan He Hongwei Zhou Hongjuan Peng Kutty Selva Nandakumar Huikuan Chu Yong Jiang Wei Gong Ye Chen Bernd Schnabl Peng Chen 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2023年第10期1156-1170,共15页
The gut microbiome is recognized as a key modulator of sepsis development.However,the contribution of the gut mycobiome to sepsis development is still not fully understood.Here,we demonstrated that the level of Candid... The gut microbiome is recognized as a key modulator of sepsis development.However,the contribution of the gut mycobiome to sepsis development is still not fully understood.Here,we demonstrated that the level of Candida albicans was markedly decreased in patients with bacterial sepsis,and the supernatant of Candida albicans culture significantly decreased the bacterial load and improved sepsis symptoms in both cecum ligation and puncture(CLP)-challenged mice and Escherichia coli-challenged pigs.Integrative metabolomics and the genetic engineering of fungi revealed that Candida albicans-derived phenylpyruvate(PPA)enhanced the bactericidal activity of macrophages and reduced organ damage during sepsis.Mechanistically,PPA directly binds to sirtuin 2(SIRT2)and increases reactive oxygen species(ROS)production for eventual bacterial clearance.Importantly,PPA enhanced the bacterial clearance capacity of macrophages in sepsis patients and was inversely correlated with the severity of sepsis in patients.Our findings highlight the crucial contribution of commensal fungi to bacterial disease modulation and expand our understanding of the host-mycobiome interaction during sepsis development. 展开更多
关键词 Candida albicans Phenylpyruvate SEPSIS MACROPHAGE bacterial clearance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部