期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Plant property regulates soil bacterial community structure under altered precipitation regimes in a semi-arid desert grassland, China
1
作者 ZHANG Lihua GAO Han +6 位作者 WANG Junfeng ZHAO Ruifeng WANG Mengmeng HAO Lianyi GUO Yafei JIANG Xiaoyu ZHONG Lingfei 《Journal of Arid Land》 SCIE CSCD 2023年第5期602-619,共18页
Variations of precipitation have great impacts on soil carbon cycle and decomposition of soil organic matter.Soil bacteria are crucial participants in regulating these ecological processes and vulnerable to altered pr... Variations of precipitation have great impacts on soil carbon cycle and decomposition of soil organic matter.Soil bacteria are crucial participants in regulating these ecological processes and vulnerable to altered precipitation.Studying the impacts of altered precipitation on soil bacterial community structure can provide a novel insight into the potential impacts of altered precipitation on soil carbon cycle and carbon storage of grassland.Therefore,soil bacterial community structure under a precipitation manipulation experiment was researched in a semi-arid desert grassland in Chinese Loess Plateau.Five precipitation levels,i.e.,control,reduced and increased precipitation by 40%and 20%,respectively(referred here as CK,DP40,DP20,IP40,and IP20)were set.The results showed that soil bacterial alpha diversity and rare bacteria significantly changed with altered precipitation,but the dominant bacteria and soil bacterial beta diversity did not change,which may be ascribed to the ecological strategy of soil bacteria.The linear discriminate analysis(LDA)effect size(LEfSe)method found that major response patterns of soil bacteria to altered precipitation were resource-limited and drought-tolerant populations.In addition,increasing precipitation greatly promoted inter-species competition,while decreasing precipitation highly facilitated inter-species cooperation.These changes in species interaction can promote different distribution ratios of bacterial populations under different precipitation conditions.In structural equation model(SEM)analysis,with changes in precipitation,plant growth characteristics were found to be drivers of soil bacterial community composition,while soil properties were not.In conclusion,our results indicated that in desert grassland ecosystem,the sensitive of soil rare bacteria to altered precipitation was stronger than that of dominant taxa,which may be related to the ecological strategy of bacteria,species interaction,and precipitation-induced variations of plant growth characteristics. 展开更多
关键词 plant-microbe interactions bacterial community diversity bacterial community composition bacterial interactions precipitation gradients
下载PDF
Strong partitioning of soil bacterial community composition and co-occurrence networks along a small-scale elevational gradient on Zijin Mountain 被引量:2
2
作者 Xu Liu Teng Yang +5 位作者 Yu Shi Yichen Zhu Mulin He Yunke Zhao Jonathan MAdams Haiyan Chu 《Soil Ecology Letters》 CAS 2021年第4期290-302,共13页
The elevational distributions of bacterial communities in natural mountain forests,especially along large elevational gradients,have been studied for many years.However,the distributional patterns that underlie variat... The elevational distributions of bacterial communities in natural mountain forests,especially along large elevational gradients,have been studied for many years.However,the distributional patterns that underlie variations in soil bacterial communities along small-scale elevational gradients in urban ecosystems are not yet well understood.Using Illumina MiSeq DNA sequencing,we surveyed soil bacterial communities at three elevations on Zijin Mountain in Nanjing City:the hilltop(300 m a.s.l.),the hillside(150 m a.s.l.),and the foot of the hill(0 m a.s.l.).The results showed that edaphic properties differed significantly with elevation.Bacterial community composition,rather than alpha diversity,strongly differed among the three elevations(Adonis:R2=0.12,P<0.01).Adonis and DistLM analyses demonstrated that bacterial community composition was highly correlated with soil pH,elevation,total nitrogen(TN),and dissolved organic carbon(DOC).The degree scores,betweenness centralities,and composition of keystone species were distinct among the elevations.These results demonstrate strong elevational partitioning in the distributions of soil bacterial communities along the gradient on Zijin Mountain.Soil pH and elevation together drove the smallscale elevational distribution of soil bacterial communities.This study broadens our understanding of distribution patterns and biotic co-occurrence associations of soil bacterial communities from large elevational gradients to short elevational gradients. 展开更多
关键词 Elevational distribution Soil pH bacterial community composition Co-occurrence network
原文传递
Soil fungistasis and its relations to soil microbial composition and diversity:A case study of a series of soils with different fungistasis 被引量:7
3
作者 Wu Minna Zhang Huiwen +3 位作者 Ll Xinyu Zhang Yan Su Zhencheng Zhang Chenggang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第7期871-877,共7页
Fungistasis is one of the important approaches to control soil-borne plant pathogens.Some hypotheses about the mechanisms for soil fungistasis had been established,which mainly focused on the soil bacterial community ... Fungistasis is one of the important approaches to control soil-borne plant pathogens.Some hypotheses about the mechanisms for soil fungistasis had been established,which mainly focused on the soil bacterial community composition,structure,diversity as well as function.In this study,the bacterial community composition and diversity of a series of soils treated by autoclaving,which coming from the same original soil sample and showing gradient fungistasis to the target soil-borne pathogen fungi Fusarium grami... 展开更多
关键词 soil fungistasis 16S rDNA clone library microbial diversity bacterial community composition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部