Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challeng...Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results.展开更多
[Objectives]The paper was to establish a molecular biological method for identification of bacterial strains.[Methods]The thalli of standard bacterial strains existing in the laboratory were collected and genomic DNA ...[Objectives]The paper was to establish a molecular biological method for identification of bacterial strains.[Methods]The thalli of standard bacterial strains existing in the laboratory were collected and genomic DNA was extracted for amplification of 16S rDNA and gyrB gene.The 16S rDNA and gyrB gene sequences were obtained after sequencing.Sequences were aligned and analyzed via EzBioCloud and NCBI database,and phylogenetic trees were constructed to determine the species relationship of strains.Meantime,they were compared with known strains.[Results]This method could identify 5 standard strains accurately to the species level.The 16S rDNA and gyrB gene sequences were aligned and analyzed in EzBioCloud database and NCBI database.The strain with the max score was consistent with the known strain.And the query cover and ident were both above 99%.[Conclusions]The established molecular biological method for identification of bacterial strains by 16S rDNA and gyrB gene has good accuracy,which effectively solves the problem that the laboratory identification of bacteria relies on traditional methods and the accuracy can not be guaranteed,and further improves the identification ability of laboratory bacterial strains.展开更多
In this paper, the Adomian’s decomposition method has been developed to yield approximate solution of bacterial chemotaxis model of fractional order in a semi-solid medium. The fractional derivatives are described in...In this paper, the Adomian’s decomposition method has been developed to yield approximate solution of bacterial chemotaxis model of fractional order in a semi-solid medium. The fractional derivatives are described in the Caputo sense. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations.展开更多
Ralstonia solanacearum causes a lethal bacterial wilt disease in many crops,leading to huge losses in crop production every year.Understanding of plant-R.solanacearum interactions will aid to develop efficient strateg...Ralstonia solanacearum causes a lethal bacterial wilt disease in many crops,leading to huge losses in crop production every year.Understanding of plant-R.solanacearum interactions will aid to develop efficient strategies to control the disease.As a soilborne pathogen,R.solanacearum naturally infects plants via roots.A huge limitation in studying plant-R.solanacearum interactions is the large variation of R.solanacearum infection assay due to the variable soil conditions and uneven inoculum exposure.Here,we developed a robust and reliable Petri-dish inoculation method which allows consistent and stable infection in young plant seedlings.This method is easy to use,takes about only 10 days from seed germination to the completion of inoculation assay,and requires less inoculum of bacteria as well as growth chamber space.We proved the efficacy of the seedling Petri-dish inoculation method by analyzing plant defense primed by molecular patterns,resistance of defense-related plant mutants,and virulence of R.solanacearum mutants.Furthermore,we demonstrated that the seedling Petri-dish inoculation method can be applied to other host plants such as tobacco and has great potential for high-throughput screening of resistant plant germplasms to bacterial wilt in the future.展开更多
Bacterial flagellar filament can undergo a stress-induced polymorphic phase transition in both vitro and vivo environments.The filament has 12 different helical forms(phases) characterized by different pitch lengths a...Bacterial flagellar filament can undergo a stress-induced polymorphic phase transition in both vitro and vivo environments.The filament has 12 different helical forms(phases) characterized by different pitch lengths and helix radii.When subjected to the frictional force of flowing fluid,the filament changes between a left-handed normal phase and a right-handed semi-coiled phase via phase nucleation and growth.This paper develops non-local finite element method(FEM) to simulate the phase transition under a displacement-controlled loading condition(controlled helix-twist).The FEM formulation is based on the Ginzburg-Landau theory using a one-dimensional non-convex and non-local continuum model.To describe the processes of the phase nucleation and growth,viscosity-type kinetics is also used.The non-local FEM simulation captures the main features of the phase transition:two-phase coexistence with an interface of finite thickness,phase nucleation and phase growth with interface propagation.The non-local FEM model provides a tool to study the effects of the interfacial energy/thickness and loading conditions on the phase transition.展开更多
The population dynamics of bacterial community was investigated in three Agricultural soils, designated as Loamy sand (A), Peaty coarse (B) and Loamy coarse sand (C) in North-East, Nigeria. The soil chemical propertie...The population dynamics of bacterial community was investigated in three Agricultural soils, designated as Loamy sand (A), Peaty coarse (B) and Loamy coarse sand (C) in North-East, Nigeria. The soil chemical properties were characterized to fully understand their nature. Metagenomic approach was used to extract soil DNA using the fast DNA Spin Kit extraction technique. The PCR-electrophoresed DNA bands were excised and subjected to a full scale Denaturing Gradient Gel Electrophoresis (DGGE) analysis. DGGE fingerprinting for the PCR-16S rDNA product revealed a diverse profile of complex population of bacterial community in the study area. The study shows that more bacterial community can be fully investigated using molecular techniques rather than traditional culture method. The implication of the results obtained is discussed.展开更多
Microbiological experiments show that the colonies of the bacterium bacillus subtilis placed on a dish filled with an agar medium and nutrient form varied spatial patterns while the individual cells grow, reproduce an...Microbiological experiments show that the colonies of the bacterium bacillus subtilis placed on a dish filled with an agar medium and nutrient form varied spatial patterns while the individual cells grow, reproduce and migrate on the dish in clumps. In this paper, we discuss a system of reaction-diffusion equations that can be used with a view to modelling this phenomenon and we solve it numerically by means of the method of lines. For the spatial discretization, we use the finite difference method and Galerkin finite element method. We present how the spatial patterns obtained depend on the spatial discretization employed and we measure the experimental order of convergence of the numerical schemes used. Further, we present the numerical results obtained by solving the model in a cubic domain.展开更多
[Objective] The curative effect of onion on bacterial rotted gill disease in grass carp was researched [Method] The combination method of taking medicine through oral and spraying was used to cure sick grass carp for ...[Objective] The curative effect of onion on bacterial rotted gill disease in grass carp was researched [Method] The combination method of taking medicine through oral and spraying was used to cure sick grass carp for 1 period of treatment in room under artificial conditions. [Result] Different concentrations of onion generated different cure rates. When the combination was adding 1.0% - 2.0% medicine into feed and spraying 2.0 g,/m3 - 5.0 g,/m3, the curative result was the best with cure rate was 70% -90% [ Conclusion] The onion was effective on curing bacterial rotted gill disease in grass carp and could be taken as curative medicine.展开更多
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through large Research Project under Grant Number RGP2/302/45supported by the Deanship of Scientific Research,Vice Presidency forGraduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant Number A426).
文摘Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results.
基金Supported by Special Project of"Grassland Talents"in Inner Mongolia.
文摘[Objectives]The paper was to establish a molecular biological method for identification of bacterial strains.[Methods]The thalli of standard bacterial strains existing in the laboratory were collected and genomic DNA was extracted for amplification of 16S rDNA and gyrB gene.The 16S rDNA and gyrB gene sequences were obtained after sequencing.Sequences were aligned and analyzed via EzBioCloud and NCBI database,and phylogenetic trees were constructed to determine the species relationship of strains.Meantime,they were compared with known strains.[Results]This method could identify 5 standard strains accurately to the species level.The 16S rDNA and gyrB gene sequences were aligned and analyzed in EzBioCloud database and NCBI database.The strain with the max score was consistent with the known strain.And the query cover and ident were both above 99%.[Conclusions]The established molecular biological method for identification of bacterial strains by 16S rDNA and gyrB gene has good accuracy,which effectively solves the problem that the laboratory identification of bacteria relies on traditional methods and the accuracy can not be guaranteed,and further improves the identification ability of laboratory bacterial strains.
文摘In this paper, the Adomian’s decomposition method has been developed to yield approximate solution of bacterial chemotaxis model of fractional order in a semi-solid medium. The fractional derivatives are described in the Caputo sense. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations.
基金This work was supported by the National Natural Science Foundation of China(32072399 and 32272641)the Fundamental Research Funds for the Central Universities(GK202201017 and GK202207024)the Program of Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests,China(MIMCP-202203).
文摘Ralstonia solanacearum causes a lethal bacterial wilt disease in many crops,leading to huge losses in crop production every year.Understanding of plant-R.solanacearum interactions will aid to develop efficient strategies to control the disease.As a soilborne pathogen,R.solanacearum naturally infects plants via roots.A huge limitation in studying plant-R.solanacearum interactions is the large variation of R.solanacearum infection assay due to the variable soil conditions and uneven inoculum exposure.Here,we developed a robust and reliable Petri-dish inoculation method which allows consistent and stable infection in young plant seedlings.This method is easy to use,takes about only 10 days from seed germination to the completion of inoculation assay,and requires less inoculum of bacteria as well as growth chamber space.We proved the efficacy of the seedling Petri-dish inoculation method by analyzing plant defense primed by molecular patterns,resistance of defense-related plant mutants,and virulence of R.solanacearum mutants.Furthermore,we demonstrated that the seedling Petri-dish inoculation method can be applied to other host plants such as tobacco and has great potential for high-throughput screening of resistant plant germplasms to bacterial wilt in the future.
基金supported by the Hong Kong University of Science and Technology and the National Natural Science Foundation of China (10902013)
文摘Bacterial flagellar filament can undergo a stress-induced polymorphic phase transition in both vitro and vivo environments.The filament has 12 different helical forms(phases) characterized by different pitch lengths and helix radii.When subjected to the frictional force of flowing fluid,the filament changes between a left-handed normal phase and a right-handed semi-coiled phase via phase nucleation and growth.This paper develops non-local finite element method(FEM) to simulate the phase transition under a displacement-controlled loading condition(controlled helix-twist).The FEM formulation is based on the Ginzburg-Landau theory using a one-dimensional non-convex and non-local continuum model.To describe the processes of the phase nucleation and growth,viscosity-type kinetics is also used.The non-local FEM simulation captures the main features of the phase transition:two-phase coexistence with an interface of finite thickness,phase nucleation and phase growth with interface propagation.The non-local FEM model provides a tool to study the effects of the interfacial energy/thickness and loading conditions on the phase transition.
文摘The population dynamics of bacterial community was investigated in three Agricultural soils, designated as Loamy sand (A), Peaty coarse (B) and Loamy coarse sand (C) in North-East, Nigeria. The soil chemical properties were characterized to fully understand their nature. Metagenomic approach was used to extract soil DNA using the fast DNA Spin Kit extraction technique. The PCR-electrophoresed DNA bands were excised and subjected to a full scale Denaturing Gradient Gel Electrophoresis (DGGE) analysis. DGGE fingerprinting for the PCR-16S rDNA product revealed a diverse profile of complex population of bacterial community in the study area. The study shows that more bacterial community can be fully investigated using molecular techniques rather than traditional culture method. The implication of the results obtained is discussed.
基金The projects “Applied Mathematics in Physics and Technical Sciences” number MSM684077 0010 of the Ministry of Education Youth and Sports of the Czech Republic and “Advanced Supercomputing Methods for Implementation of Mathematical Models” number SGS11/161/OHK4/3T/14
文摘Microbiological experiments show that the colonies of the bacterium bacillus subtilis placed on a dish filled with an agar medium and nutrient form varied spatial patterns while the individual cells grow, reproduce and migrate on the dish in clumps. In this paper, we discuss a system of reaction-diffusion equations that can be used with a view to modelling this phenomenon and we solve it numerically by means of the method of lines. For the spatial discretization, we use the finite difference method and Galerkin finite element method. We present how the spatial patterns obtained depend on the spatial discretization employed and we measure the experimental order of convergence of the numerical schemes used. Further, we present the numerical results obtained by solving the model in a cubic domain.
基金The Natural Science Project of Xichang College(xA0509)~~
文摘[Objective] The curative effect of onion on bacterial rotted gill disease in grass carp was researched [Method] The combination method of taking medicine through oral and spraying was used to cure sick grass carp for 1 period of treatment in room under artificial conditions. [Result] Different concentrations of onion generated different cure rates. When the combination was adding 1.0% - 2.0% medicine into feed and spraying 2.0 g,/m3 - 5.0 g,/m3, the curative result was the best with cure rate was 70% -90% [ Conclusion] The onion was effective on curing bacterial rotted gill disease in grass carp and could be taken as curative medicine.