Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),whi...Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),which simulates the foraging behavior of “E.coli” bacterium,to tune the Gaussian membership functions parameters of an improved Takagi-Sugeno-Kang fuzzy system(C-ITSKFS) rule base.To remove the defect of the low rate of convergence and prematurity,three modifications were produced to the standard bacterial foraging optimization(BFO).As for the low accuracy of finding out all optimal solutions with multi-method functions,the IBFO was performed.In order to demonstrate the performance of the proposed IBFO,multiple comparisons were made among the BFO,particle swarm optimization(PSO),and IBFO by MATLAB simulation.The simulation results show that the IBFO has a superior performance.展开更多
The airborne pollutants monitoring is an overriding task for humanity given that poor quality of air is a matter of public health, causing issues mainly in the respiratory and cardiovascular systems, specifically the ...The airborne pollutants monitoring is an overriding task for humanity given that poor quality of air is a matter of public health, causing issues mainly in the respiratory and cardiovascular systems, specifically the PM10 particle. In this contribution is generated a base model with an Adaptive Neuro Fuzzy Inference System (ANFIS) which is later optimized, using a swarm intelligence technique, named Bacteria Foraging Optimization Algorithm (BFOA). Several experiments were carried with BFOA parameters, tuning them to achieve the best configuration of said parameters that produce an optimized model, demonstrating that way, how the optimization process is influenced by choice of the parameters.展开更多
In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the us...In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.展开更多
Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In th...Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In the past decades,numerous swarm intelligence algorithms have been developed,including ant colony optimization(ACO),particle swarm optimization(PSO),artificial fish swarm(AFS),bacterial foraging optimization(BFO),and artificial bee colony(ABC).This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures.It provides an overview of the various swarm intelligence algorithms and their advanced developments,and briefly provides the description of their successful applications in optimization problems of engineering fields.Finally,opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments.展开更多
In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formu...In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formulated as a non-linear optimization problem and the optimal solution is obtained using BFOA. With the proposed reconfiguration method, the radial structure of the distribution system is retained and the burden on the optimization technique is reduced. Test results are presented for the 16-bus sample network, the proposed reconfiguration method has effectively decreased the LBI, and the BFOA technique is efficient in searching for the optimal solution.展开更多
Inspired by the foraging behavior of E.coli bacteria,bacterial foraging optimization(BFO)has emerged as a powerful technique for solving optimization problems.However,BFO shows poor performance on complex and high-dim...Inspired by the foraging behavior of E.coli bacteria,bacterial foraging optimization(BFO)has emerged as a powerful technique for solving optimization problems.However,BFO shows poor performance on complex and high-dimensional optimization problems.In order to improve the performance of BFO,a new dynamic bacterial foraging optimization based on clonal selection(DBFO-CS)is proposed.Instead of fixed step size in the chemotaxis operator,a new piecewise strategy adjusts the step size dynamically by regulatory factor in order to balance between exploration and exploitation during optimization process,which can improve convergence speed.Furthermore,reproduction operator based on clonal selection can add excellent genes to bacterial populations in order to improve bacterial natural selection and help good individuals to be protected,which can enhance convergence precision.Then,a set of benchmark functions have been used to test the proposed algorithm.The results show that DBFO-CS offers significant improvements than BFO on convergence,accuracy and robustness.A complex optimization problem of model reduction on stable and unstable linear systems based on DBFO-CS is presented.Results show that the proposed algorithm can efficiently approximate the systems.展开更多
In HIV/AIDS patients, antiretroviral therapy (ART) is used for reducing the viral load and helps in increasing the life span of the individual. However, severe side effects are associated with the use of antiretrovi...In HIV/AIDS patients, antiretroviral therapy (ART) is used for reducing the viral load and helps in increasing the life span of the individual. However, severe side effects are associated with the use of antiretroviral drugs. Hence, a treatment schedule, using minimal amount of drugs, is required for maintaining a low viral load and a healthy immune system. The objective of this work is to compute the optimal dosage of antiretroviral drugs for therapy planning in HIV/AIDS patients, using intelligent optimization techniques. In this work, two computational swarm intelligence techniques known as the particle swarm optimization (PSO) and bacterial foraging optimization (BFO) in conjunction with the three-dimensional mathematical model of HIV/AIDS have been used for estimating the optimal drug dosage for administering therapy by minimization of viral load as well as the total drug concentration. Results demonstrate that, using the proposed method, it is possible to achieve minimal viral load and an improved immune system, with the estimated drug dosage. Further, it was observed that the efficiency of BFO (CD4 cells = 757 cells/mm^3 at seventh year of infection) for estimation of optimal drug dosage is higher than the PSO method (CD4 cells = 817 cells/mm^3 at seventh year of infection). This work seems to be of high clini- cal relevance since, at present, ART is the widely used procedure for treatment of HIV infected patients.展开更多
基金supported by the Key Project of Natural Science Fund of Education Department of Anhui Province under Grant No.KJ2015A058Major Program of Teaching Research of Educational Commission of Anhui Province of China under Grant No.2015zdjy059
文摘Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),which simulates the foraging behavior of “E.coli” bacterium,to tune the Gaussian membership functions parameters of an improved Takagi-Sugeno-Kang fuzzy system(C-ITSKFS) rule base.To remove the defect of the low rate of convergence and prematurity,three modifications were produced to the standard bacterial foraging optimization(BFO).As for the low accuracy of finding out all optimal solutions with multi-method functions,the IBFO was performed.In order to demonstrate the performance of the proposed IBFO,multiple comparisons were made among the BFO,particle swarm optimization(PSO),and IBFO by MATLAB simulation.The simulation results show that the IBFO has a superior performance.
文摘The airborne pollutants monitoring is an overriding task for humanity given that poor quality of air is a matter of public health, causing issues mainly in the respiratory and cardiovascular systems, specifically the PM10 particle. In this contribution is generated a base model with an Adaptive Neuro Fuzzy Inference System (ANFIS) which is later optimized, using a swarm intelligence technique, named Bacteria Foraging Optimization Algorithm (BFOA). Several experiments were carried with BFOA parameters, tuning them to achieve the best configuration of said parameters that produce an optimized model, demonstrating that way, how the optimization process is influenced by choice of the parameters.
文摘In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China(62073330)in part by the Natural Science Foundation of Hunan Province(2019JJ20021,2020JJ4339)in part by the Scientific Research Fund of Hunan Province Education Department(20B272)。
文摘Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In the past decades,numerous swarm intelligence algorithms have been developed,including ant colony optimization(ACO),particle swarm optimization(PSO),artificial fish swarm(AFS),bacterial foraging optimization(BFO),and artificial bee colony(ABC).This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures.It provides an overview of the various swarm intelligence algorithms and their advanced developments,and briefly provides the description of their successful applications in optimization problems of engineering fields.Finally,opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments.
文摘In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formulated as a non-linear optimization problem and the optimal solution is obtained using BFOA. With the proposed reconfiguration method, the radial structure of the distribution system is retained and the burden on the optimization technique is reduced. Test results are presented for the 16-bus sample network, the proposed reconfiguration method has effectively decreased the LBI, and the BFOA technique is efficient in searching for the optimal solution.
基金This work is supported in part by National Natural Science Foundation of China under Grant no.51375368.
文摘Inspired by the foraging behavior of E.coli bacteria,bacterial foraging optimization(BFO)has emerged as a powerful technique for solving optimization problems.However,BFO shows poor performance on complex and high-dimensional optimization problems.In order to improve the performance of BFO,a new dynamic bacterial foraging optimization based on clonal selection(DBFO-CS)is proposed.Instead of fixed step size in the chemotaxis operator,a new piecewise strategy adjusts the step size dynamically by regulatory factor in order to balance between exploration and exploitation during optimization process,which can improve convergence speed.Furthermore,reproduction operator based on clonal selection can add excellent genes to bacterial populations in order to improve bacterial natural selection and help good individuals to be protected,which can enhance convergence precision.Then,a set of benchmark functions have been used to test the proposed algorithm.The results show that DBFO-CS offers significant improvements than BFO on convergence,accuracy and robustness.A complex optimization problem of model reduction on stable and unstable linear systems based on DBFO-CS is presented.Results show that the proposed algorithm can efficiently approximate the systems.
文摘In HIV/AIDS patients, antiretroviral therapy (ART) is used for reducing the viral load and helps in increasing the life span of the individual. However, severe side effects are associated with the use of antiretroviral drugs. Hence, a treatment schedule, using minimal amount of drugs, is required for maintaining a low viral load and a healthy immune system. The objective of this work is to compute the optimal dosage of antiretroviral drugs for therapy planning in HIV/AIDS patients, using intelligent optimization techniques. In this work, two computational swarm intelligence techniques known as the particle swarm optimization (PSO) and bacterial foraging optimization (BFO) in conjunction with the three-dimensional mathematical model of HIV/AIDS have been used for estimating the optimal drug dosage for administering therapy by minimization of viral load as well as the total drug concentration. Results demonstrate that, using the proposed method, it is possible to achieve minimal viral load and an improved immune system, with the estimated drug dosage. Further, it was observed that the efficiency of BFO (CD4 cells = 757 cells/mm^3 at seventh year of infection) for estimation of optimal drug dosage is higher than the PSO method (CD4 cells = 817 cells/mm^3 at seventh year of infection). This work seems to be of high clini- cal relevance since, at present, ART is the widely used procedure for treatment of HIV infected patients.