This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstrea...This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstream(Case 3),downstream(Case 4),and the entire cathode flow channel(Case 5)to study the effects of baffle position on mass transport,power density,net power,etc.Moreover,the effects of back pressure and humidity on the voltage were investigated.Results showed that compared to smooth channels,the oxygen and water transport facilitation at the diffusion layer-channel interface were added 11.53%-20.60%and 7.81%-9.80%at 1.68 A·cm^(-2)by adding baffles.The closer the baffles were to upstream,the higher the total oxygen flux,but the lower the flux uniformity the worse the water removal.The oxygen flux of upstream baffles was 8.14%higher than that of downstream baffles,but oxygen flux uniformity decreased by 18.96%at 1.68 A·cm^(-2).The order of water removal and voltage improvement was Case 4>Case 5>Case 3>Case 2>Case 1.Net power of Case 4 was 9.87%higher than that of the smooth channel.To the Case 4,when the cell worked under low back pressure or high humidity,the voltage increments were higher.The potential increment for the back pressure of 0 atm was 0.9%higher than that of 2 atm(1 atm=101.325 kPa).The potential increment for the humidity of 100%was 7.89%higher than that of 50%.展开更多
The baffle effectively slowed down debris flow velocity,reduced its kinetic energy,and significantly shortened the distance of debris flow movement.Consequently,they are widely used for protection against natural haza...The baffle effectively slowed down debris flow velocity,reduced its kinetic energy,and significantly shortened the distance of debris flow movement.Consequently,they are widely used for protection against natural hazards such as landslides and mudslides.This study,based on the threedimensional DEM(Discrete Element Method),investigated the impact of different baffle positions on debris flow protection.Debris flow velocity and kinetic energy variations were studied through single-factor experiments.Suitable baffle positions were preliminarily selected by analyzing the influence of the first-row baffle position on the impact force and accumulation mass of debris flow.Subsequently,based on the selected baffle positions and four factors influencing the effectiveness of baffle protection(baffle position(P),baffle height(h),row spacing(S_(r)),and angle of transit area(α)),an orthogonal design was employed to further explore the optimal arrangement of baffles.The research results indicate that the use of a baffle structure could effectively slow down the motion velocity of debris flows and dissipate their energy.When the baffle is placed in the transit area,the impact force on the first-row baffle is greater than that when the baffle is placed in the deposition area.Similarly,when the baffle is placed in the transit area,the obstruction effect on debris flow mass is also greater than that when the baffle is placed in the deposition area.Through orthogonal experimental range analysis,when the impact on the first row of baffles is used as the evaluation criterion,the importance of each influencing factor is ranked asα>P>S_(r)>h.When the mass of debris flow behind the baffle is regarded as the evaluation criterion,the rank is changed to P>α>S_(r)>h.The experimental simulation results show that the optimal baffle arrangement is:P_(5),S_(r)=16,α=35°,h=9.展开更多
The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma...The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.展开更多
Different Baffle designs usable in cylindrical and elliptical storage tanks carried by trucks often used for transporting inflammable liquid materials in Cameroon are investigated to evaluate their safest fluid sloshi...Different Baffle designs usable in cylindrical and elliptical storage tanks carried by trucks often used for transporting inflammable liquid materials in Cameroon are investigated to evaluate their safest fluid sloshing damping response during emergency braking where the magnitude of sloshing waves are the greatest. The uncontrolled fluid sloshing creates thrust on the walls of the tanks usually felt externally on the truck carrying the tank and capable of hindering driver’s effort to maintain steer ability and improve on safety during critical braking moments. The study first passes through COMSOL, to expose the safest margin of each Baffle type at instantaneous fluid pressure wave propagation initiated at a single phase to reflect sloshing in the storage tank during an emergency braking by the truck carrying the tank. The vivid results can be seen in the domain of Acoustic Iso-surface Pressure response;but also acoustic Pressure and Sound pressure response are seen automatically. Secondly, through an experimental finding in which fluid is forced to pass through each Baffle and the resistance to fluid flow is a measured as it’s the Baffle’s damping ability. Either, the fluid is lost through the Baffle and by determination of the surface load exerted on each Baffle due to the reaction of the residual fluid acting on the surface of each Baffle after some of it is Lost, the individual sloshing damping abilities are exposed. By comparing the Experimental outcome with the computational response obtained, an ideal Baffle design is proposed for cylindrical and elliptical tanks and considered to respond to abrupt braking more effciently. The application of the Baffle designs with an average multiple holes rather than the usual face centered proved to be more effcient in fluid sloshing as they provide a more uniformly distributed damping pressure during fluid sloshing in the tank thereby reducing the magnitude of forward thrust that can be created by the conventional Baffle type during emergency braking hence contributing to improving safety. Mindful of the human, material and environmental damages that an accident involving mobile petroleum storage tanks can course, this study is therefore of great significance for design optimization by petroleum storage tank manufacturing companies in Cameroon.展开更多
Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, tw...Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, two quadrant baffle schemes, and two continuous helical baffle schemes. The temperature contour or the pressure contour and velocity contour plots with superimposed velocity vectors on meridian, transverse and unfolded concentric hexagonal slices are presented to obtain a full angular view. For the six helix baffled heat exchangers,the different patterns of the single vortex secondary flow and the shortcut leakage flow were depicted as well as the heat transfer properties were compared. The results show that the optimum scheme among the six configurations is a circumferential overlap trisection helix baffled heat exchanger with a baffle incline angle of 20°(20°TCO) scheme with an anti-shortcut baffle structure, which exhibits the second highest pressure dropΔpo, the highest overall heat transfer coefficient K, shell-side heat transfer coefficient hoand shell-side average comprehensive index ho/Δpo.展开更多
Solid-liquid suspension in stirred tank is a common operation in the chemical industry. The power consumption, flow pattern and flow field instability of three systems named as unbaffled stirred tank, traditional baff...Solid-liquid suspension in stirred tank is a common operation in the chemical industry. The power consumption, flow pattern and flow field instability of three systems named as unbaffled stirred tank, traditional baffled stirred tank and punched baffled stirred tank(Pun-BST) were studied by using the computational fluid dynamic analysis. Results showed that perforating holes in the baffles could reduce power consumption of mixing. Meanwhile, the punched baffle system could maintain the solids in suspension as traditional baffle system. The results also showed that the baffles could increase the “effective flow” of stirred tank even though the whole velocity of the vessel is lower than un-baffled vessel. In addition, both the solid-liquid suspension and “effective flow” were related to instability of the flow field.Perfect solid-liquid suspension results always along with obvious instability of the flow field. But, the strengthening effect of punched baffle on flow field instability mainly happened in the near-wall area.It's because the collision and aggregation among sub-streams induced by holes intensified the unstable fluid flow. On the whole, the Pun-BST system provided much better mixing characteristics and recommended to apply in the industrial process.展开更多
Chaotic mixing in eight different types of micro T-mixer flow has been studied experimentally and numerically. The present experimental study was performed to visualize two-liquid flows in a micro T-mixer with baffles...Chaotic mixing in eight different types of micro T-mixer flow has been studied experimentally and numerically. The present experimental study was performed to visualize two-liquid flows in a micro T-mixer with baffles. The Reynolds number, baffle height and setting angle were varied to investigate their effect on the mixing performance. Three micro T-mixer models were produced, which are several centimeters long and have a rectangular cross-section of few millimeters a side. The mixing of two-liquid was measured using the laser induced fluorescence (LIF) technique. Moreover, three-dimensional numerical simulations were conducted with the open-source CFD solver, OpenFOAM, for the same configuration as used in the experiments to investigate the detailed mechanism of the chaotic mixing. As a result, it was found that the mixing of two-liquid is greatly improved in the micro T-mixer with baffle. The baffle height and setting angle show a significant influence on the mixing performance.展开更多
The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and com...The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient h_o and pressure drop Δp_o both increase while the comprehensive index h_o/Δp_o decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index h_o/Δp_o of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nu_o and the comprehensive index Nu_o·Eu_(zo)^(-1) increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance.展开更多
[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,T...[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,TP,NH+4-N,CODCr,SS,SD,etc.were determined in the band baffled surface flow wetlands with total area of 7 400 m2 at JiaLu riverside.[Result] Baffled surface flow wetlands could improve the effluent quality significantly,could enhance transparency and dissolved oxygen content and also could decrease SS content.The removal rate of TN was kept at more than 73% in summer and decreased to 23% in early winter;The removal rate of TP was little influenced by temperature,and it was kept at more than 77% in summer and still kept at more than 69% in autumn and winter;The removal rate of NH+4-N was kept at more than 83% in summer and decreased slightly in autumn and winter,but still kept at more than 75%;The removal rate of CODCr ranged from 14% to 50%.[Conclusion] Baffled surface flow wetlands could effectively improve the purification effect of surface flow wetlands,which is a feasible way for ecological restoration.展开更多
The shell side flow fields of both sextant and trisection helical baffle heat exchangers are presented on meridian and multilayer hexagon slices.It verifies that the performance of sextant schemes is better than those...The shell side flow fields of both sextant and trisection helical baffle heat exchangers are presented on meridian and multilayer hexagon slices.It verifies that the performance of sextant schemes is better than those of the other kinds of helical baffle heat exchangers.The main mechanisms are due to the restricted leakage flow in the minimized gaps with increased baffle number and by one row of tubes dampen the leakage flow in the circumferential overlapped area of the adjacent helical baffles.The performance features were simulated on two different angled sextant helical heat exchangers and each compared with two trisection ones of either identical helical pitch or identical incline angle.The results verified that the performances of helical heat exchangers are mainly determined by the helical pitch rather than the baffle incline angle.The average values of comprehensive index hoΔpo-1/3 of the trisection helical schemes T-24.1°and T-29.7°are correspondingly 3.47%and 3.34%lower than those of the sextant ones X-20°and X-25°with identical helical pitches.The comparison results show that the average values of shell side h.t.c.hoand comprehensive index hoΔpo-1/3 of the optimal dual helix sextant scheme DX30°are respectively 7.22%and 23.56%higher than those of the segment scheme S100.展开更多
For an alcohol/water system and with fin baffle packing,continuous distillation experiments were carried out in a rotating packed bed(RPB)system at atmospheric pressure.The effects of the average high gravity factor(...For an alcohol/water system and with fin baffle packing,continuous distillation experiments were carried out in a rotating packed bed(RPB)system at atmospheric pressure.The effects of the average high gravity factor(β),liquid reflux ratio(R)and feedstock flux(F)on the momentum transfer and mass transfer were investigated. The gas phase pressure drop of RPB increased with the average high gravity factor,liquid reflux ratio and feedstock flux,which was 13.55-64.37 Pa atβof 2.01-51.49,R of 1.0-2.5,and F of 8-24 L·h1for a theoretical tray in the RPB with fin baffle packing.The investigation on the mass transfer in the RPB with different packings showed that the number of transfer units of RPB with a packing also increased with the average high gravity factor,reflux ratio and feedstock flux.It is found that the fin baffle packing(packing III)presents the best mass transfer performance and lowest pressure drop for the height equivalent to a theoretical plate(HETP),which is 6.59-9.84 mm.展开更多
Liquid sloshing is a common phenomenon in the liquid tanks transportation. Liquid waves lead to fluctuating forces on the tank wall. Uncontrolled fluctuations lead to large forces and momentums. Baffles can control th...Liquid sloshing is a common phenomenon in the liquid tanks transportation. Liquid waves lead to fluctuating forces on the tank wall. Uncontrolled fluctuations lead to large forces and momentums. Baffles can control these fluctuations. A numerical method, which has been widely used to model this phenomenon, is Smoothed Particle Hydrodynamics(SPH). The Lagrangian nature of this method makes it suitable for simulating free surface flows. In the present study, an accurate Incompressible Smoothed Particle Hydrodynamics(ISPH) method is developed and improved using the kernel gradient correction tensors, particle shifting algorithms, k–ε turbulence model, and free surface particle detectors. Comparisons with the experimental data approve the ability of the present algorithm for simulating shallow water sloshing. The main aim of this study is to investigate the effects of the vertical baffle on the damping of liquid sloshing. Results show that baffles number has a major role in sloshing fluctuation damping.展开更多
A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this expe...A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this experimental rig to estimate the free surface fluctuation and pressure distribution by changing external excitation frequency of the shaking table. An in-house CFD code is also used in this study to simulate the liquid sloshing in three-dimensional (3D) rectangular tank with perforated baffle. Good agreements of free surface elevation and pressure between the numerical results and the experimental data are obtained and presented. Spectral analysis of the time history of free surface elevation is conducted by using the fast Fourier transformation.展开更多
The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier...The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier anaerobic baffled reactor (CABR) treating dilute wastewater was operated under a wide range of operational conditions, namely, feed strengths of 300-600 mg/L, HRTs of 9- 18 h, and temperatures of 10-28℃. Generally, SMP production increased with increasing feed strength and decreasing temperature. At high temperature (28℃), SMP production increased with decreasing HRT. As the temperature was decreased to 18 and 10℃, the SMP production was at its peak for 12 h HRT. Therefore, temperature could be an important determinant of SMP production along with HRT. A higher SMP to soluble chemical oxygen demand (SCOD) ratio was found at high temperature and long HRT because of complete volatile fatty acid degradation. SMP accounted for 50%-75% of the SCOD in the last chamber of the CABR. As a secondary metabolite, some SMP could be consumed at lower feed strength.展开更多
To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floati...To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floating particles in transformative Kanbara Reactor(KR) are measured in one and four baffled stirred tanks experimentally. Then numerical simulations with standard k-ε model coupled with volume of fluid model(VOF) and discrete phase model(DPM) are conducted to analyze the flow field at the just drawdown speed Njd. The torques on the impeller obtained from experiments and simulations agree well with each other, which indicates the validity of our numerical simulations. Based on the simulations, three main drawdown mechanisms for floating particles, the axial circulation, turbulent fluctuation and largescale eddies, are analyzed. It's found that the axial circulation dominates the drawdown process at small submergence(S = 1/4 T and 1/3 T) and the large-scale eddies play a major role at large submergence(S = 2/3 T and 3/4 T). Besides, the turbulent fluctuation affects the drawdown process significantly for up pumping mode at small submergence(S = 1/4 T and 1/3 T) and for down pumping mode at large submergence(S = 2/3 T and 3/4 T). This paper helps to provide a more comprehensive understanding of the KR desulphurizer drawdown process in the baffled stirred tank.展开更多
The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In orde...The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In order to avoid the above defects, the ROD-baffle heat exchanger has been developed. However, its collocation of heat transfer tubes is conventionally in square, which leads to fewer heat transfer area per unit volume. Based on the ROD-baffle heat exchanger, a new type curve-ROD baffle has been developed, and an industrial investigation of the curve-ROD baffle heat exchanger with normal triangular collocation has been carried into execution. In this paper, two equations using the Reynolds number were acquired to predict the heat transfer coefficients of the shell-side and tube-side. The experimental results show that the shell-side heat transfer and pressure drop characteristics of the curve-ROD baffle heat exchanger are superior to those of the segmental baffle one.展开更多
A finite difference model for solving Navier Stokes viscous liquid sloshing-wave interaction with baffles in a tank. equations with turbulence taken into accotmt is used to investigate The volume-of-fluid and virtual ...A finite difference model for solving Navier Stokes viscous liquid sloshing-wave interaction with baffles in a tank. equations with turbulence taken into accotmt is used to investigate The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.展开更多
The fluid motion in partially filled tanks with internal baffles has wide engineering applications. The installation of baffles is expected to reduce the effect of sloshing as well as the consequent environmental dama...The fluid motion in partially filled tanks with internal baffles has wide engineering applications. The installation of baffles is expected to reduce the effect of sloshing as well as the consequent environmental damages. In the present study, a series of experimental tests are performed to investigate the sloshing phenomenon in a baffled rectangular storage tank. In addition, the sloshing phenomenon is also modeled by using Open Foam. Based on the experimental and numerical studies, optimization of the geometric parameters of the tank is performed based on some criteria such as tank area, entropy generation, and the horizontal force exerted on the tank area due to the sloshing phenomenon.The optimization is also carried out based on the entropy generation minimization analysis. It is noted that the optimum baffle height is in the range of h_b/h_w=0.5-0.75 in the present study(where h_b and h_w are the baffle height and water depth, respectively). Based on the results, the optimal design of the tank is achieved with R_A= 0.9-1.0(where R_A=L/W, L and W are the length and width of the tank, respectively). The results also show that the increase of h_b can lead to a decrease of the maximum pressure and horizontal force exerted on the tank. It is also noted that the horizontal force exerted on the tank firstly continues to increase as the sway motion amplitude increases.However, as the normalized motion amplitude parameter, a/L(The parameter a is the motion amplitude), exceeds0.067, the effect of motion amplitude on the force is not obvious. The same optimization is also performed in the multiple-variable-baffled tank and prismatic storage tank.展开更多
Shape and quantity of helical baffles have great impact on the shell-side performance of helical baffled heat exchangers (HBHE). In this work, three physical models of HBHE with baffles of different shape (trisecti...Shape and quantity of helical baffles have great impact on the shell-side performance of helical baffled heat exchangers (HBHE). In this work, three physical models of HBHE with baffles of different shape (trisection, quadrant and sextant sector) were investigated. Numerical simulations were performed on HBHE at three helix an- gles (10°, 25° and 40°) by the software ANSYS CFX. Analyses of numerical results indicate that the sextant HBHE shows relatively better fluid flow performance because the leakage flow in the triangle area is evidently reduced and the fluid streamline appears much closer to an ideal spiral flow, while the trisection and quadrant HBHE show more scattered and disordered streamline distributions. The convective heat transfer coefficient and pressure drop in three types of HBHE were presented. Further investigations on the shell side performance with different helical baf- fles were implemented by the field synergy theory. Both theoretical and numerical analyses gave support on the re- lations between helical baffle shape and shell-side performance. This paper may provide useful reference for the selection of baffle shade and auantitv in HBHE.展开更多
Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), a...Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation. Methods COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR. Results The removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor. Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃to 28℃.展开更多
基金financially supported by the Science&Technology Project of Beijing Education Committee(KM202210005013)National Natural Science Foundation of China(52306180)。
文摘This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstream(Case 3),downstream(Case 4),and the entire cathode flow channel(Case 5)to study the effects of baffle position on mass transport,power density,net power,etc.Moreover,the effects of back pressure and humidity on the voltage were investigated.Results showed that compared to smooth channels,the oxygen and water transport facilitation at the diffusion layer-channel interface were added 11.53%-20.60%and 7.81%-9.80%at 1.68 A·cm^(-2)by adding baffles.The closer the baffles were to upstream,the higher the total oxygen flux,but the lower the flux uniformity the worse the water removal.The oxygen flux of upstream baffles was 8.14%higher than that of downstream baffles,but oxygen flux uniformity decreased by 18.96%at 1.68 A·cm^(-2).The order of water removal and voltage improvement was Case 4>Case 5>Case 3>Case 2>Case 1.Net power of Case 4 was 9.87%higher than that of the smooth channel.To the Case 4,when the cell worked under low back pressure or high humidity,the voltage increments were higher.The potential increment for the back pressure of 0 atm was 0.9%higher than that of 2 atm(1 atm=101.325 kPa).The potential increment for the humidity of 100%was 7.89%higher than that of 50%.
基金provided by the National Natural Science Foundation of China(Grant No.41977233)the key projects of the Science and Technology Department of Sichuan Province(Grant No.2020YJ0360)+1 种基金Sichuan Education and Teaching Reform project(Grant No.JG2021-1069)the opening project of Sichuan province university key Laboratory(Grant No.SC_FQWLY-2020-Z-02)。
文摘The baffle effectively slowed down debris flow velocity,reduced its kinetic energy,and significantly shortened the distance of debris flow movement.Consequently,they are widely used for protection against natural hazards such as landslides and mudslides.This study,based on the threedimensional DEM(Discrete Element Method),investigated the impact of different baffle positions on debris flow protection.Debris flow velocity and kinetic energy variations were studied through single-factor experiments.Suitable baffle positions were preliminarily selected by analyzing the influence of the first-row baffle position on the impact force and accumulation mass of debris flow.Subsequently,based on the selected baffle positions and four factors influencing the effectiveness of baffle protection(baffle position(P),baffle height(h),row spacing(S_(r)),and angle of transit area(α)),an orthogonal design was employed to further explore the optimal arrangement of baffles.The research results indicate that the use of a baffle structure could effectively slow down the motion velocity of debris flows and dissipate their energy.When the baffle is placed in the transit area,the impact force on the first-row baffle is greater than that when the baffle is placed in the deposition area.Similarly,when the baffle is placed in the transit area,the obstruction effect on debris flow mass is also greater than that when the baffle is placed in the deposition area.Through orthogonal experimental range analysis,when the impact on the first row of baffles is used as the evaluation criterion,the importance of each influencing factor is ranked asα>P>S_(r)>h.When the mass of debris flow behind the baffle is regarded as the evaluation criterion,the rank is changed to P>α>S_(r)>h.The experimental simulation results show that the optimal baffle arrangement is:P_(5),S_(r)=16,α=35°,h=9.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51978336 and 11702117)the Science and Technology Plan Project of Department of Communications of Zhejiang Province(Grant No.2021051)Nantong City Social Livelihood Science and Technology Project(Grant No.MS22022067).
文摘The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter.
文摘Different Baffle designs usable in cylindrical and elliptical storage tanks carried by trucks often used for transporting inflammable liquid materials in Cameroon are investigated to evaluate their safest fluid sloshing damping response during emergency braking where the magnitude of sloshing waves are the greatest. The uncontrolled fluid sloshing creates thrust on the walls of the tanks usually felt externally on the truck carrying the tank and capable of hindering driver’s effort to maintain steer ability and improve on safety during critical braking moments. The study first passes through COMSOL, to expose the safest margin of each Baffle type at instantaneous fluid pressure wave propagation initiated at a single phase to reflect sloshing in the storage tank during an emergency braking by the truck carrying the tank. The vivid results can be seen in the domain of Acoustic Iso-surface Pressure response;but also acoustic Pressure and Sound pressure response are seen automatically. Secondly, through an experimental finding in which fluid is forced to pass through each Baffle and the resistance to fluid flow is a measured as it’s the Baffle’s damping ability. Either, the fluid is lost through the Baffle and by determination of the surface load exerted on each Baffle due to the reaction of the residual fluid acting on the surface of each Baffle after some of it is Lost, the individual sloshing damping abilities are exposed. By comparing the Experimental outcome with the computational response obtained, an ideal Baffle design is proposed for cylindrical and elliptical tanks and considered to respond to abrupt braking more effciently. The application of the Baffle designs with an average multiple holes rather than the usual face centered proved to be more effcient in fluid sloshing as they provide a more uniformly distributed damping pressure during fluid sloshing in the tank thereby reducing the magnitude of forward thrust that can be created by the conventional Baffle type during emergency braking hence contributing to improving safety. Mindful of the human, material and environmental damages that an accident involving mobile petroleum storage tanks can course, this study is therefore of great significance for design optimization by petroleum storage tank manufacturing companies in Cameroon.
基金Supported by the National Natural Science Foundation of China(50976022,51276035)the Provincial Science and Technology Innovation and Transformation of Achievements of Special Fund Project of Jiangsu Province(BY2011155)
文摘Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, two quadrant baffle schemes, and two continuous helical baffle schemes. The temperature contour or the pressure contour and velocity contour plots with superimposed velocity vectors on meridian, transverse and unfolded concentric hexagonal slices are presented to obtain a full angular view. For the six helix baffled heat exchangers,the different patterns of the single vortex secondary flow and the shortcut leakage flow were depicted as well as the heat transfer properties were compared. The results show that the optimum scheme among the six configurations is a circumferential overlap trisection helix baffled heat exchanger with a baffle incline angle of 20°(20°TCO) scheme with an anti-shortcut baffle structure, which exhibits the second highest pressure dropΔpo, the highest overall heat transfer coefficient K, shell-side heat transfer coefficient hoand shell-side average comprehensive index ho/Δpo.
基金supported by the National Natural Science Foundation of China (22078030, Z20200804)National Key Research and Development Program of China (2019YFC1905802)+1 种基金Key Project of Independent Research Project of State Key Laboratory of Coal Mine Disaster Dynamics and Control (2011DA105287zd201902)Hubei Three Gorges Laboratory Open/Innovation Fund (SK211009, SK215001)。
文摘Solid-liquid suspension in stirred tank is a common operation in the chemical industry. The power consumption, flow pattern and flow field instability of three systems named as unbaffled stirred tank, traditional baffled stirred tank and punched baffled stirred tank(Pun-BST) were studied by using the computational fluid dynamic analysis. Results showed that perforating holes in the baffles could reduce power consumption of mixing. Meanwhile, the punched baffle system could maintain the solids in suspension as traditional baffle system. The results also showed that the baffles could increase the “effective flow” of stirred tank even though the whole velocity of the vessel is lower than un-baffled vessel. In addition, both the solid-liquid suspension and “effective flow” were related to instability of the flow field.Perfect solid-liquid suspension results always along with obvious instability of the flow field. But, the strengthening effect of punched baffle on flow field instability mainly happened in the near-wall area.It's because the collision and aggregation among sub-streams induced by holes intensified the unstable fluid flow. On the whole, the Pun-BST system provided much better mixing characteristics and recommended to apply in the industrial process.
文摘Chaotic mixing in eight different types of micro T-mixer flow has been studied experimentally and numerically. The present experimental study was performed to visualize two-liquid flows in a micro T-mixer with baffles. The Reynolds number, baffle height and setting angle were varied to investigate their effect on the mixing performance. Three micro T-mixer models were produced, which are several centimeters long and have a rectangular cross-section of few millimeters a side. The mixing of two-liquid was measured using the laser induced fluorescence (LIF) technique. Moreover, three-dimensional numerical simulations were conducted with the open-source CFD solver, OpenFOAM, for the same configuration as used in the experiments to investigate the detailed mechanism of the chaotic mixing. As a result, it was found that the mixing of two-liquid is greatly improved in the micro T-mixer with baffle. The baffle height and setting angle show a significant influence on the mixing performance.
基金Project(50976035)supported by the National Natural Science Foundation of ChinaProject(4521ZK120064004)supported by the Science and Technology Commission Green Energy and Power Engineering of Special Fund Project of Shanghai,China
文摘The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient h_o and pressure drop Δp_o both increase while the comprehensive index h_o/Δp_o decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index h_o/Δp_o of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nu_o and the comprehensive index Nu_o·Eu_(zo)^(-1) increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance.
基金Supported by Deep Purification Technology Project of Mixed Mode Wetland for Sewage Plant Waster Water in Dryland(2006AA6Z325)~~
文摘[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,TP,NH+4-N,CODCr,SS,SD,etc.were determined in the band baffled surface flow wetlands with total area of 7 400 m2 at JiaLu riverside.[Result] Baffled surface flow wetlands could improve the effluent quality significantly,could enhance transparency and dissolved oxygen content and also could decrease SS content.The removal rate of TN was kept at more than 73% in summer and decreased to 23% in early winter;The removal rate of TP was little influenced by temperature,and it was kept at more than 77% in summer and still kept at more than 69% in autumn and winter;The removal rate of NH+4-N was kept at more than 83% in summer and decreased slightly in autumn and winter,but still kept at more than 75%;The removal rate of CODCr ranged from 14% to 50%.[Conclusion] Baffled surface flow wetlands could effectively improve the purification effect of surface flow wetlands,which is a feasible way for ecological restoration.
基金Supported by the National Natural Science Foundation of China(51776035).
文摘The shell side flow fields of both sextant and trisection helical baffle heat exchangers are presented on meridian and multilayer hexagon slices.It verifies that the performance of sextant schemes is better than those of the other kinds of helical baffle heat exchangers.The main mechanisms are due to the restricted leakage flow in the minimized gaps with increased baffle number and by one row of tubes dampen the leakage flow in the circumferential overlapped area of the adjacent helical baffles.The performance features were simulated on two different angled sextant helical heat exchangers and each compared with two trisection ones of either identical helical pitch or identical incline angle.The results verified that the performances of helical heat exchangers are mainly determined by the helical pitch rather than the baffle incline angle.The average values of comprehensive index hoΔpo-1/3 of the trisection helical schemes T-24.1°and T-29.7°are correspondingly 3.47%and 3.34%lower than those of the sextant ones X-20°and X-25°with identical helical pitches.The comparison results show that the average values of shell side h.t.c.hoand comprehensive index hoΔpo-1/3 of the optimal dual helix sextant scheme DX30°are respectively 7.22%and 23.56%higher than those of the segment scheme S100.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(20060110003)the Youth Science and Technology Research Fund of Shanxi Province(2008021009-1)the Development Project Fund for Colleges and Universities of Shanxi Province(20091127)
文摘For an alcohol/water system and with fin baffle packing,continuous distillation experiments were carried out in a rotating packed bed(RPB)system at atmospheric pressure.The effects of the average high gravity factor(β),liquid reflux ratio(R)and feedstock flux(F)on the momentum transfer and mass transfer were investigated. The gas phase pressure drop of RPB increased with the average high gravity factor,liquid reflux ratio and feedstock flux,which was 13.55-64.37 Pa atβof 2.01-51.49,R of 1.0-2.5,and F of 8-24 L·h1for a theoretical tray in the RPB with fin baffle packing.The investigation on the mass transfer in the RPB with different packings showed that the number of transfer units of RPB with a packing also increased with the average high gravity factor,reflux ratio and feedstock flux.It is found that the fin baffle packing(packing III)presents the best mass transfer performance and lowest pressure drop for the height equivalent to a theoretical plate(HETP),which is 6.59-9.84 mm.
文摘Liquid sloshing is a common phenomenon in the liquid tanks transportation. Liquid waves lead to fluctuating forces on the tank wall. Uncontrolled fluctuations lead to large forces and momentums. Baffles can control these fluctuations. A numerical method, which has been widely used to model this phenomenon, is Smoothed Particle Hydrodynamics(SPH). The Lagrangian nature of this method makes it suitable for simulating free surface flows. In the present study, an accurate Incompressible Smoothed Particle Hydrodynamics(ISPH) method is developed and improved using the kernel gradient correction tensors, particle shifting algorithms, k–ε turbulence model, and free surface particle detectors. Comparisons with the experimental data approve the ability of the present algorithm for simulating shallow water sloshing. The main aim of this study is to investigate the effects of the vertical baffle on the damping of liquid sloshing. Results show that baffles number has a major role in sloshing fluctuation damping.
基金supported by the China Postdoctoral Science Foundation(Grant No.2012M511192)the National Natural Science Foundation of China(Grant Nos.51209080 and 51061130547+5 种基金Open Fund of State Key Laboratory of Coastaland Off shore Engineering(Grant No.LP1207the Open Fund of State Key Laboratory of Hydraulics and Mountain River Engineering(Grant No.1213)Qing Lan Project and 333 Project of Jiangsu Province(Grant No.BRA2012130)the Fundamental Research Funds for the Central Universities(Hohai University,Grant No.2012B06514the 111 Project(Grant No.B12032)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120181110084)
文摘A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this experimental rig to estimate the free surface fluctuation and pressure distribution by changing external excitation frequency of the shaking table. An in-house CFD code is also used in this study to simulate the liquid sloshing in three-dimensional (3D) rectangular tank with perforated baffle. Good agreements of free surface elevation and pressure between the numerical results and the experimental data are obtained and presented. Spectral analysis of the time history of free surface elevation is conducted by using the fast Fourier transformation.
文摘The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier anaerobic baffled reactor (CABR) treating dilute wastewater was operated under a wide range of operational conditions, namely, feed strengths of 300-600 mg/L, HRTs of 9- 18 h, and temperatures of 10-28℃. Generally, SMP production increased with increasing feed strength and decreasing temperature. At high temperature (28℃), SMP production increased with decreasing HRT. As the temperature was decreased to 18 and 10℃, the SMP production was at its peak for 12 h HRT. Therefore, temperature could be an important determinant of SMP production along with HRT. A higher SMP to soluble chemical oxygen demand (SCOD) ratio was found at high temperature and long HRT because of complete volatile fatty acid degradation. SMP accounted for 50%-75% of the SCOD in the last chamber of the CABR. As a secondary metabolite, some SMP could be consumed at lower feed strength.
基金Supported by the National Natural Science Foundation of China(51474109,51609090,51679097)the Science Research Project of Huazhong University of Science and Technology(0118140077,2006140115)
文摘To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floating particles in transformative Kanbara Reactor(KR) are measured in one and four baffled stirred tanks experimentally. Then numerical simulations with standard k-ε model coupled with volume of fluid model(VOF) and discrete phase model(DPM) are conducted to analyze the flow field at the just drawdown speed Njd. The torques on the impeller obtained from experiments and simulations agree well with each other, which indicates the validity of our numerical simulations. Based on the simulations, three main drawdown mechanisms for floating particles, the axial circulation, turbulent fluctuation and largescale eddies, are analyzed. It's found that the axial circulation dominates the drawdown process at small submergence(S = 1/4 T and 1/3 T) and the large-scale eddies play a major role at large submergence(S = 2/3 T and 3/4 T). Besides, the turbulent fluctuation affects the drawdown process significantly for up pumping mode at small submergence(S = 1/4 T and 1/3 T) and for down pumping mode at large submergence(S = 2/3 T and 3/4 T). This paper helps to provide a more comprehensive understanding of the KR desulphurizer drawdown process in the baffled stirred tank.
文摘The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In order to avoid the above defects, the ROD-baffle heat exchanger has been developed. However, its collocation of heat transfer tubes is conventionally in square, which leads to fewer heat transfer area per unit volume. Based on the ROD-baffle heat exchanger, a new type curve-ROD baffle has been developed, and an industrial investigation of the curve-ROD baffle heat exchanger with normal triangular collocation has been carried into execution. In this paper, two equations using the Reynolds number were acquired to predict the heat transfer coefficients of the shell-side and tube-side. The experimental results show that the shell-side heat transfer and pressure drop characteristics of the curve-ROD baffle heat exchanger are superior to those of the segmental baffle one.
基金supported by the National Natural Science Foundation of China(Nos.51679079 and 51209080)the Fundamental Research Funds for the Central Universities(No.2014B17314)+3 种基金the Program for Excellent Innovative Talents of Hohai Universitythe Open Fund of State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University(HESS-1703)the Open Fund Program of Key Laboratory of Water & Sediment Science and Water Hazard Prevention,Changsha University of Science & Technology(2015SS03)the 111 Project(B12032)
文摘A finite difference model for solving Navier Stokes viscous liquid sloshing-wave interaction with baffles in a tank. equations with turbulence taken into accotmt is used to investigate The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.
基金inancially supported by the National Natural Science Foundation of China (Grant No. 51761135011)Joint supported by NSFC and Royal Society (Grant No. 52011530183)。
文摘The fluid motion in partially filled tanks with internal baffles has wide engineering applications. The installation of baffles is expected to reduce the effect of sloshing as well as the consequent environmental damages. In the present study, a series of experimental tests are performed to investigate the sloshing phenomenon in a baffled rectangular storage tank. In addition, the sloshing phenomenon is also modeled by using Open Foam. Based on the experimental and numerical studies, optimization of the geometric parameters of the tank is performed based on some criteria such as tank area, entropy generation, and the horizontal force exerted on the tank area due to the sloshing phenomenon.The optimization is also carried out based on the entropy generation minimization analysis. It is noted that the optimum baffle height is in the range of h_b/h_w=0.5-0.75 in the present study(where h_b and h_w are the baffle height and water depth, respectively). Based on the results, the optimal design of the tank is achieved with R_A= 0.9-1.0(where R_A=L/W, L and W are the length and width of the tank, respectively). The results also show that the increase of h_b can lead to a decrease of the maximum pressure and horizontal force exerted on the tank. It is also noted that the horizontal force exerted on the tank firstly continues to increase as the sway motion amplitude increases.However, as the normalized motion amplitude parameter, a/L(The parameter a is the motion amplitude), exceeds0.067, the effect of motion amplitude on the force is not obvious. The same optimization is also performed in the multiple-variable-baffled tank and prismatic storage tank.
基金Supported by the National Natural Science Foundation of China(51106090)the National Key Basic Research Program of China(2013CB228305)the Independent Innovation Foundation of Shandong University(2012TS190)
文摘Shape and quantity of helical baffles have great impact on the shell-side performance of helical baffled heat exchangers (HBHE). In this work, three physical models of HBHE with baffles of different shape (trisection, quadrant and sextant sector) were investigated. Numerical simulations were performed on HBHE at three helix an- gles (10°, 25° and 40°) by the software ANSYS CFX. Analyses of numerical results indicate that the sextant HBHE shows relatively better fluid flow performance because the leakage flow in the triangle area is evidently reduced and the fluid streamline appears much closer to an ideal spiral flow, while the trisection and quadrant HBHE show more scattered and disordered streamline distributions. The convective heat transfer coefficient and pressure drop in three types of HBHE were presented. Further investigations on the shell side performance with different helical baf- fles were implemented by the field synergy theory. Both theoretical and numerical analyses gave support on the re- lations between helical baffle shape and shell-side performance. This paper may provide useful reference for the selection of baffle shade and auantitv in HBHE.
基金project supported by the Science and Technology Department of Zhejiang Province (2005C13003).
文摘Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation. Methods COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR. Results The removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor. Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃to 28℃.