With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication o...With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The Water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge' and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.展开更多
The stoichiometric matrix of a simplified metabolic network inBacillus Subtillis was constructed from the flux balance equations,which were used for reconciliation of the measured rates anddetermination of the inner m...The stoichiometric matrix of a simplified metabolic network inBacillus Subtillis was constructed from the flux balance equations,which were used for reconciliation of the measured rates anddetermination of the inner metabolic rates. Thus more reliableresults of the true and empirical maintenance coefficients wereobtained. The true maintenance coefficient is linearly related to thespecific growth rate and changes with the P/O ratio. The measuredbiomass yield of adenosine triphosphate (ATP) is also linearlyrelated to the P/O ratio.展开更多
A mass balance analysis was undertaken for liquid steel production using a computer program specially developed for the AC electric arc furnace at an important alloy steel producer in Turkey. The data obtained by usin...A mass balance analysis was undertaken for liquid steel production using a computer program specially developed for the AC electric arc furnace at an important alloy steel producer in Turkey. The data obtained by using the computer program were found to be very close to the actual production ones.展开更多
Metabolic modeling and machine learning(ML)are crucial components of the evolving next-generation tools in systems and synthetic biology,aiming to unravel the intricate relationship between genotype,phenotype,and the ...Metabolic modeling and machine learning(ML)are crucial components of the evolving next-generation tools in systems and synthetic biology,aiming to unravel the intricate relationship between genotype,phenotype,and the environment.Nonetheless,the comprehensive exploration of integrating these two frameworks,and fully harnessing the potential of fluxomic data,remains an unexplored territory.In this study,we present,rigorously evaluate,and compare ML-based techniques for data integration.The hybrid model revealed that the overexpression of six target genes and the knockout of seven target genes contribute to enhanced ethanol production.Specifically,we investigated the influence of succinate dehydrogenase(SDH)on ethanol biosynthesis in Saccharomyces cerevisiae through shake flask experiments.The findings indicate a noticeable increase in ethanol yield,ranging from 6%to 10%,in SDH subunit gene knockout strains compared to the wild-type strain.Moreover,in pursuit of a high-yielding strain for ethanol production,dual-gene deletion experiments were conducted targeting glycerol-3-phosphate dehydrogenase(GPD)and SDH.The results unequivocally demonstrate significant enhancements in ethanol production for the engineered strains Δsdh4Δgpd1,Δsdh5Δgpd1,Δsdh6Δgpd1,Δsdh4Δgpd2,Δsdh5Δgpd2,and Δsdh6Δgpd2,with improvements of 21.6%,27.9%,and 22.7%,respectively.Overall,the results highlighted that integrating mechanistic flux features substantially improves the prediction of gene knockout strains not accounted for in metabolic reconstructions.In addition,the finding in this study delivers valuable tools for comprehending and manipulating intricate phenotypes,thereby enhancing prediction accuracy and facilitating deeper insights into mechanistic aspects within the field of synthetic biology.展开更多
Background:Human immunodeficiency virus type 1(HIV-1)remains a persistent global health challenge.Therefore,a continuous exploration of novel therapeutic strategies is essential.A comprehensive understanding of how HI...Background:Human immunodeficiency virus type 1(HIV-1)remains a persistent global health challenge.Therefore,a continuous exploration of novel therapeutic strategies is essential.A comprehensive understanding of how HIV-1 utilizes the cellular metabolism machinery for replication can provide insights into new therapeutic approaches.Methods:In this study,we performed a flux balance analysis using a genome-scale metabolic model(GEM)integrated with an HIV-1 viral biomass objective function to identify potential targets for anti–HIV-1 interventions.We generated a GEM by integrating an HIV-1 production reaction into CD4+T cells and optimized for both host and virus optimal states as objective functions to depict metabolic profiles of cells in the status for optimal host biomass maintenance or for optimal HIV-1 virion production.Differential analysis was used to predict biochemical reactions altered optimal for HIV-1 production.In addition,we conducted in silico simulations involving gene and reaction knock-outs to identify potential anti–HIV-1 targets,which were subsequently validated by human phytohemagglutinin(PHA)blasts infected with HIV-1.Results:Differential analysis identified several altered biochemical reactions,including increased lysine uptake and oxidative phosphorylation(OXPHOS)activities in the virus optima compared with the host optima.In silico gene and reaction knock-out simulations revealed de novo pyrimidine synthesis,and OXPHOS could serve as potential anti–HIV-1 metabolic targets.In vitro assay confirmed that targeting OXPHOS using metformin could suppress the replication of HIV-1 by 56.6%(385.4±67.5 pg/mL in the metformintreated group vs.888.4±32.3 pg/mL in the control group,P<0.001).Conclusion:Our integrated host-virus genome-scale metabolic study provides insights on potential targets(OXPHOS)for anti-HIV therapies.展开更多
One of the greatest challenges in the agroecosystem is to improve cropland intensification while preserving agroecosystem services.While many studies have investigated the effect of cropland intensification on agroeco...One of the greatest challenges in the agroecosystem is to improve cropland intensification while preserving agroecosystem services.While many studies have investigated the effect of cropland intensification on agroecosystem service,the interactive coupling and coordination among these factors remain largely unexplored.In view of this,this study performed a case study of the Loess Plateau in Shaanxi Province,China and constructed comprehensive evaluation models to quantify the cropland intensification and agroecosystem service in this area.Balance analysis and the coupling coordination degree model were used to evaluate the interactive relationship between cropland intensification and agroecosystem service,and statistical analysis and spatial autocorrelation were used to analyze the spatial characteristics and potential mechanism of the coupling coordination.Results show that both the cropland intensification and agroecosystem service in the study area were relatively low yet gradually increased from 2000 to 2020.Agroecosystem service lag was identified as the dominant unbalanced development type.Improving the supply capacity of agroecosystem services plays a key role in the balanced development of cropland in the Loess Plateau.The coupling coordination degree between cropland intensification and agroecosystem service ranges from basic coordination to serious incoordination.Therefore,cropland intensification practices in the area should be optimized to enhance this coordination degree.An upward trend was also observed in the coupling coordination degree from2000 to 2020.The withdrawal of marginal cropland in the Grain for Green program is one of the most important reasons for this trend,especially for the northern region.Around 83.6%of the high-high clusters are concentrated in the southern region of the Loess Plateau,whereas 70.5%of the low-low clusters are distributed in the northern region.These clustering characteristics are mainly attributed to the environmental suitability of these areas for agriculture and their degree of economic development.展开更多
This article utilizes a large amount of statistical data to analyze the global distribution of foreign trade in China since 1990,as well as the factors involved and the changes in trends.The research results indicate ...This article utilizes a large amount of statistical data to analyze the global distribution of foreign trade in China since 1990,as well as the factors involved and the changes in trends.The research results indicate that China has gained a favourable balance against developed countries and a disadvantageous balance against developing countries;China enjoys a trade surplus with North American and European countries while suffering deficits with those in the Asia.pacific region,as well as with resource-abundant Australia,Africa and South America. With regard to trends,the structure of China’s foreign trade will not undergo fundamental changes in the short term,but in the long run will be transformed in line with restructuring of the growth pattern.展开更多
The laws of influence of different factors have been analyzed in order to enhance the working efficiency and fatigue life of the cleaning element in brush shape of the sugarcane harvester. Based on the principle of or...The laws of influence of different factors have been analyzed in order to enhance the working efficiency and fatigue life of the cleaning element in brush shape of the sugarcane harvester. Based on the principle of orthogonal experiment design, the virtual-orthogonal-experimental analysis for the cleaning element is carried out on the finite element analysis (FEA) software-ANSYS after analyzing the nonlinear structural behavior in the working procedure. The results are analyzed with the overall balancing method, and then the optimal combination is got, which is made up of different levels of different factors. Also the optimal combination of design parameters of the cleaning element received fiom the virtual experimental analysis is conducted an experiment to confirm that the virtual analysis model and results are right, and the effect of factors on the function of the cleaning element is obtained by more analysis and further optimizing.展开更多
Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution an...Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term‘noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states.展开更多
ABSTRACT The role of ocean dynamics in maintaining the Pacific Decadal Variability (PDV) was investigated based on simulation results from the Parallel Ocean Program (POP) ocean general circulation model develope...ABSTRACT The role of ocean dynamics in maintaining the Pacific Decadal Variability (PDV) was investigated based on simulation results from the Parallel Ocean Program (POP) ocean general circulation model developed at the Los Alamos National Laboratory (LANL). A long-term control simulation of the LANL-POP model forced by a reconstructed coupled wind stress field over the period 1949-2001 showed that the ocean model not only simulates a reasonable climatology, but also produces a climate variability pattem very similar to observed PDV. In the Equatorial Pacific (EP) region, the decadal warming is confined in the thin surface layer. Beneath the surface, a strong compensating cooling, accompanied by a basin-wide-scale overturning circulation in opposition to the mean flow, occurs in the thermocline layer. In the North Pacific (NP) region, the decadal variability nonetheless exhibits a relatively monotonous pattern, characterized by the dominance of anomalous cooling and eastward flows. A term balance analysis of the perturbation heat budget equation was conducted to highlight the ocean's role in main- taining the PDV-like variability over the EP and NP regions. The analyses showed that strong oceanic adjustment must occur in the equatorial thermocline in association with the anomalous overturning circulation in order to maintain the PDV-like variability, including a flattening of the equatorial thermocline slpoe and an enhancement of the upper ocean's stratification (stability), as the climate shifts from a colder regime toward a warmer one. On the other hand, the oceanic response in the extratropical region seems to be confined to the surface layer, without much participation from the subsurface oceanic dynamics.展开更多
OBJECTIVE One of the long-expected goals of genome-scale metabolic modeling is to evaluate the influence of the perturbed enzymes to the yield of an expected end product.METHDOS Metabolic control analysis(MCA)performs...OBJECTIVE One of the long-expected goals of genome-scale metabolic modeling is to evaluate the influence of the perturbed enzymes to the yield of an expected end product.METHDOS Metabolic control analysis(MCA)performs such role to calculate the sensitivity of flux change upon that of enzymes under the framework of ordinary differential equation(ODE)models,which are restricted in small-scale networks and require explicit kinetic parameters.The constraint-based models,like flux balance analysis(FBA),lack of the room of performing MCA because they are parameters-free.In this study,we developed a hyper-cube shrink algorithm(HCSA)to incorporate the enzymatic properties to the FBA model by introducing a pair of parameters for each reaction.Our algorithm was able to handle not only prediction of knockout strains but also strains with an adjustment of expression level of certain enzymes.RESULTS We first showed the concept by applying HCSA to a simplest three-nodes network.Then we show the HCSA possesses Michaelis-Menten like behaviors characterized by steady state of ODE.We obtained good prediction of a synthetic network in Saccharomyces cerevisiae producing voilacein and analogues.Finally we showed its capability of predicting the flux distribution in genome-scale networks by applying it to sporulation in yeast.CONCLUSION We have developed an algorithm the impact on fluxes when certain enzymes were inhibited or activated.It provides us a powerful tool to evaluate the consequences of enzyme inhibitor or activator.展开更多
Sampling study is an effective exploration method, but the most extreme environments of hydrothermal vents pose considerable engineering challenges for sampling hydrothermal fluids. Moreover, traditional sampler syste...Sampling study is an effective exploration method, but the most extreme environments of hydrothermal vents pose considerable engineering challenges for sampling hydrothermal fluids. Moreover, traditional sampler systems with sample valves have difficulty in maintaining samples in situ pressure. However, decompression changes have effect on microorganisms sensitive to such stresses. To address the technical difficulty of collecting samples from hydrothermal vents, a new bidirectional high pressure-resistant sample valve with balanced poppet was designed. The sample valve utilizes a soft high performance plastic "PEEK" as poppet. The poppet with inapposite dimension is prone to occur to plastic deformation or rupture for high working pressure in experiments. To address this issue, based on the fmite element model, simulated results on stress distribution of the poppet with different structure parameters and preload spring force were obtained. The static axial deformations on top of the poppet were experimented. The simulated results agree with the experimental results. The new sample valve seals well and it can withstand high working pressure.展开更多
Considering energy security and greenhouse gas emission, many governments are developing bio-liquid fuel industries. The Chinese Government advocates the development of a fuel ethanol industry with non-food crops such...Considering energy security and greenhouse gas emission, many governments are developing bio-liquid fuel industries. The Chinese Government advocates the development of a fuel ethanol industry with non-food crops such as cassava. However, scientists debate the carbon emission of these bio-liquid fuels. The focuses are the influence of soil carbon pool destruction and by-product utilization. This study built a carbon balance analysis model, and assessed carbon emission of cassava fuel ethanol across its life cycle. The results show that the carbon emission of cassava fuel ethanol per kilogram in its life cycle was 0.457 kg under new technical conditions and 0.647 kg under old technical conditions. Carbon emission mainly came from the use of nitrogen fertilizer (9% of total emissions), the destruction of the soil carbon pool (29%) and fossil energy inputs (50%). Taking gasoline as a reference, the carbon emission of cassava fuel ethanol was 90% of that of gasoline. This percentage would drop to 64% if soil carbon pool destruction was avoided. Therefore, in order to promote the development of cassava fuel ethanol in China, farms should apply fertilizer properly, grow cassava on marginal land, and not alter land use patterns of woodland, grassland and other environments. In addition, we should exploit efficient fuel ethanol conversion technologies and strengthen the use of by-products.展开更多
Background Several enzymes and cofactors have been identified as contributing to the slow utilization of xylose by xylose-fermenting strains of Saccharomyces cerevisiae.However,there has been no consensus on which of ...Background Several enzymes and cofactors have been identified as contributing to the slow utilization of xylose by xylose-fermenting strains of Saccharomyces cerevisiae.However,there has been no consensus on which of these possible bottle-necks are the most important to address.A previous strain characterization study from our lab suggested that insufficient NAD+limits fermentation and may be the most important bottleneck affecting utilization of xylose for the production of ethanol.The development and validation of a genome scale dynamic flux balance model would help to verify the existence and extent of this and other metabolic bottlenecks and suggest solutions to guide future strain development thereby minimiz-ing bottleneck impact on process economics.Results A dynamic flux balance model was developed to identify bottlenecks in several strains of S.cerevisiae,both with wild-type pentose phosphate pathway expression and with the pathway over expressed.ZWF1 was found to be limiting in the oxidative portion of the pentose phosphate pathway under oxygen replete conditions.This pathway is used to regenerate NADPH.Under oxygen limiting conditions,respiration of xylose was limited by the lack of oxygen as a terminal electron acceptor.Ethanol production was also limited under these conditions due to the inability to balance NAD+/NADH.The model suggests the use of the anaplerotic glyoxylate pathway to improve NAD+/NADH balance,increasing ethanol produc-tion by 50%while producing succinate as a coproduct at upwards of 20 g/l.Conclusion In the production of high value chemicals from biomass,the use of the respiratory metabolism is a waste of feedstock carbon.Bottlenecks previously identified in the oxidative pentose phosphate pathway are currently only relevant under oxygen-replete conditions and cannot impact the partitioning of carbon between the respiratory and fermentative pathways.Focusing future efforts on the non-respiratory balancing of NAD+/NADH,perhaps through the glyoxylate pathway,would improve the economics of ethanol production both directly and through coproduct formation.展开更多
We determine using a compound model the influence of the mass of granular matter on the behavior of a supercritical circulating fluidized bed (CFB) reactor. Population balance enables a stationary-regime modeling of...We determine using a compound model the influence of the mass of granular matter on the behavior of a supercritical circulating fluidized bed (CFB) reactor. Population balance enables a stationary-regime modeling of the mass flow of granular matter inside a CFB unit in a large-scale. The simulation includes some important dynamic processes of gas-particle flows in fluidized bed such as attrition, fragmenta- tion, elutriation, and fuel combustion. Numerical calculations with full boiler loading were performed of operational parameters such as furnace temperature, furnace pressure, feeding materials mass flows, and excess air ratio. Furthermore, three bed inventory masses were adopted as experimental variables in the simulation model of mass balance. This approach enables a sensitivity study of mass flows of granular matter inside a CFB facility. Some computational results from this population balance model obtained for a supercritical CFB reactor are presented that show consistency with the operational data for large-scale CFB units.展开更多
Piezoelectric stack transducers in d33 mode have a much higher mechanical-to-electric energy conversion efficiency compared with d3l mode piezoelectric harvesters.However,multilayered piezoelectric stacks usually oper...Piezoelectric stack transducers in d33 mode have a much higher mechanical-to-electric energy conversion efficiency compared with d3l mode piezoelectric harvesters.However,multilayered piezoelectric stacks usually operate in off-resonance due to the higher stiffness and thereby have a lower power output under low-frequency excitations.This paper proposes to apply the dynamic magnetic pre-loading to a piezoelectric stack transducer to significantly increase the power output.The energy harvesting system consists of a multilayered piezoelectric stack with a compliant force amplification frame,a proof mass,and two magnets configured in attraction.The static force-displacement relationship of the magnets is identified from experiments and extended to a dynamic model capable of characterizing the dynamic magnetic interaction.An electromechanical model is developed based on the theoretical derivation and the experimentally identified parameters to predict the voltage outputs under different resistive loads.Approximate analytical solutions are derived by using the harmonic balance method and show good agreements with the numerical and experimental results.The performance of the system is examined and compared with that of the harvester without magnetic pre-loading.The influences of the distance between the two magnets and the electrical resistive loads on the power output are investigated.Results indicate the energy harvesting system with magnetic pre-loading can produce over thousand times more power than the system without magnetic pre-loading at the base excitation of 3 Hz and 0.5 m/s……2,far below the resonance at 243 Hz.展开更多
A lab-scale intermittently aerated sequencing batch reactor(IASBR)was applied to treat anaerobically digested swine wastewater(ADSW)to explore the removal characteristics of veterinary antibiotics.The removal rate...A lab-scale intermittently aerated sequencing batch reactor(IASBR)was applied to treat anaerobically digested swine wastewater(ADSW)to explore the removal characteristics of veterinary antibiotics.The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand(COD)volumetric loadings,solid retention times(SRT)and ratios of COD to total nitrogen(TN)or COD/TN.Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics.Mass balance analysis revealed that greater than 60%of antibiotics in the influent were biodegraded in the IASBR,whereas averagely 24%were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium.Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand(COD)volumetric loadings,which could achieve up to 85.1%±1.4%at 0.17±0.041 kg COD/m-3/day,while dropped to 75.9%±1.3%and 49.3%±12.1%when COD volumetric loading increased to 0.65±0.032 and1.07±0.073 kg COD/m-3/day,respectively.Tetracyclines,the dominant antibiotics in ADSW,were removed by 87.9%in total at the lowest COD loading,of which 30.4%were contributed by sludge sorption and 57.5%by biodegradation,respectively.In contrast,sulfonamides were removed about 96.2%,almost by biodegradation.Long SRT seemed to have little obvious impact on antibiotics removal,while a shorter SRT of 30–40 day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge.Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work.展开更多
This paper mainly discusses the analysis and design of a finline single-ended mixer and detector. In the circuit, for the purpose of eliminating high-order resonant modes and improving transition loss, metallic via ho...This paper mainly discusses the analysis and design of a finline single-ended mixer and detector. In the circuit, for the purpose of eliminating high-order resonant modes and improving transition loss, metallic via holes are implemented along the mounting edge of the substrate embedded in the split-block of the WG-finline-microstrip transition. Meanwhile, a Ka band slow-wave and bandstop filter, which represents a reactive termination, is designed for the utilization of idle frequencies and operation frequencies energy. Full-wave analysis is carded out to optimize the input matching network of the mixer and the detector circuit using lumped elements to model the nonlinear diode. The exported S-matrix of the optimized circuit is used for conversion loss and voltage sensitivity analysis. The lowest measured conversion loss is 3.52 dB at 32.2 GHz; the conversion loss is flat and less than 5.68 dB in the frequency band of 29-34 GHz. The highest measured zero-bias voltage sensitivity is 1450 mV/mW at 38.6 GHz, and the sensitivity is better than 1000 mV/mW in the frequency band of 38-40 GHz.展开更多
Interactions between crops and livestock have been at the core of the evolution of many agricultural systems.In this paper,we review the development and characteristics of mixed crop-livestock systems,with a focus on ...Interactions between crops and livestock have been at the core of the evolution of many agricultural systems.In this paper,we review the development and characteristics of mixed crop-livestock systems,with a focus on grassland-based systems,as these cover large areas in China,and face several challenges.Following the transition from the original hunting and foraging systems to a sedentary lifestyle with integrated crop-livestock production systems some 8000 years ago,a range of different mixed systems have developed,depending on rainfall,solar radiation and temperature,culture and markets.We describe 5 main types of integrated systems,(1)livestock and rangeland,(2)livestock and grain production,(3)livestock and crop-grassland rotations,(4)livestock,crops and forest(silvo-pasture),and(5)livestock,crops and fish ponds.Next,two of these mixed systems are described in greater detail,i.e.,the mountain-oasis-desert system and its modifications in arid and semi-arid regions,and the integrated crop-livestock production systems on the Loess Plateau.In general,crop-livestock interactions in integrated systems have significant positive effects on crop production,livestock production,energy use efficiency and economic profitability.We conclude that improved integration of crop-livestock production systems is one of the most important ways for achieving a more sustainable development of animal agriculture in China.展开更多
The objective of this study was to improve the production of butyric acid by process optimization using the metabolically engineered mutant of Clostridium tyrobutyricum (PAK-Em). First, the free-cell fermentation at...The objective of this study was to improve the production of butyric acid by process optimization using the metabolically engineered mutant of Clostridium tyrobutyricum (PAK-Em). First, the free-cell fermentation at pH 6.0 produced butyric acid with concentration of 38.44 g/L and yield of 0.42 g/g. Second, the immobilized- cell fermentations using fibrous-bed bioreactor (FBB) were run at pHs of 5.0, 5.5, 6.0, 6.5 and 7.0 to optimize fermentation process and improve the butyric acid production. It was found that the highest titer of butyric acid, 63.02g/L, was achieved at pH 6.5. Finally, the metabolic flux balance analysis was performed to inves- tigate the carbon rebalance in C. tyrobutyricum. The results show both gene manipulation and fermentation pH change redistribute carbon between biomass, acetic acid and butyric acid. This study demonstrated that high butyric acid production could be obtained by integrating metabolic engineering and fermentation process optimization.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 40471018)the National Basic Research Program of China (973 Program, Grant No. 2002 CB412310)Hundred Talents Programme of the Chinese Academy of Sciences
文摘With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The Water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge' and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.
基金Supported by the Key Program of National Natural Science Foundation of China (No. 20036010) and the National Science Fund for Distinguished Young Scholars (No. 20028607).
文摘The stoichiometric matrix of a simplified metabolic network inBacillus Subtillis was constructed from the flux balance equations,which were used for reconciliation of the measured rates anddetermination of the inner metabolic rates. Thus more reliableresults of the true and empirical maintenance coefficients wereobtained. The true maintenance coefficient is linearly related to thespecific growth rate and changes with the P/O ratio. The measuredbiomass yield of adenosine triphosphate (ATP) is also linearlyrelated to the P/O ratio.
文摘A mass balance analysis was undertaken for liquid steel production using a computer program specially developed for the AC electric arc furnace at an important alloy steel producer in Turkey. The data obtained by using the computer program were found to be very close to the actual production ones.
基金financially supported by the National Natural Science Foundation of China(Grant NO.32071461)the National Key Research and Development Program of China(Grant NO.2019YFA0904300).
文摘Metabolic modeling and machine learning(ML)are crucial components of the evolving next-generation tools in systems and synthetic biology,aiming to unravel the intricate relationship between genotype,phenotype,and the environment.Nonetheless,the comprehensive exploration of integrating these two frameworks,and fully harnessing the potential of fluxomic data,remains an unexplored territory.In this study,we present,rigorously evaluate,and compare ML-based techniques for data integration.The hybrid model revealed that the overexpression of six target genes and the knockout of seven target genes contribute to enhanced ethanol production.Specifically,we investigated the influence of succinate dehydrogenase(SDH)on ethanol biosynthesis in Saccharomyces cerevisiae through shake flask experiments.The findings indicate a noticeable increase in ethanol yield,ranging from 6%to 10%,in SDH subunit gene knockout strains compared to the wild-type strain.Moreover,in pursuit of a high-yielding strain for ethanol production,dual-gene deletion experiments were conducted targeting glycerol-3-phosphate dehydrogenase(GPD)and SDH.The results unequivocally demonstrate significant enhancements in ethanol production for the engineered strains Δsdh4Δgpd1,Δsdh5Δgpd1,Δsdh6Δgpd1,Δsdh4Δgpd2,Δsdh5Δgpd2,and Δsdh6Δgpd2,with improvements of 21.6%,27.9%,and 22.7%,respectively.Overall,the results highlighted that integrating mechanistic flux features substantially improves the prediction of gene knockout strains not accounted for in metabolic reconstructions.In addition,the finding in this study delivers valuable tools for comprehending and manipulating intricate phenotypes,thereby enhancing prediction accuracy and facilitating deeper insights into mechanistic aspects within the field of synthetic biology.
基金the National Natural Science Foundation of China(82071784)the Fundamental Research Funds for the Central Universities(2042022dx0003 and PTPP2023002)+1 种基金the Key Research and Development Project of Hubei Province(2020BCA069)the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University(ZNJC202007).
文摘Background:Human immunodeficiency virus type 1(HIV-1)remains a persistent global health challenge.Therefore,a continuous exploration of novel therapeutic strategies is essential.A comprehensive understanding of how HIV-1 utilizes the cellular metabolism machinery for replication can provide insights into new therapeutic approaches.Methods:In this study,we performed a flux balance analysis using a genome-scale metabolic model(GEM)integrated with an HIV-1 viral biomass objective function to identify potential targets for anti–HIV-1 interventions.We generated a GEM by integrating an HIV-1 production reaction into CD4+T cells and optimized for both host and virus optimal states as objective functions to depict metabolic profiles of cells in the status for optimal host biomass maintenance or for optimal HIV-1 virion production.Differential analysis was used to predict biochemical reactions altered optimal for HIV-1 production.In addition,we conducted in silico simulations involving gene and reaction knock-outs to identify potential anti–HIV-1 targets,which were subsequently validated by human phytohemagglutinin(PHA)blasts infected with HIV-1.Results:Differential analysis identified several altered biochemical reactions,including increased lysine uptake and oxidative phosphorylation(OXPHOS)activities in the virus optima compared with the host optima.In silico gene and reaction knock-out simulations revealed de novo pyrimidine synthesis,and OXPHOS could serve as potential anti–HIV-1 metabolic targets.In vitro assay confirmed that targeting OXPHOS using metformin could suppress the replication of HIV-1 by 56.6%(385.4±67.5 pg/mL in the metformintreated group vs.888.4±32.3 pg/mL in the control group,P<0.001).Conclusion:Our integrated host-virus genome-scale metabolic study provides insights on potential targets(OXPHOS)for anti-HIV therapies.
基金Under the auspices of the National Natural Science Foundation of China(No.41901262)Natural Science Basic Research Program of Shaanxi(No.2024JC-YBQN-0300)Fundamental Research Funds for the Central Universities(No.GK202103125,GK202207005)。
文摘One of the greatest challenges in the agroecosystem is to improve cropland intensification while preserving agroecosystem services.While many studies have investigated the effect of cropland intensification on agroecosystem service,the interactive coupling and coordination among these factors remain largely unexplored.In view of this,this study performed a case study of the Loess Plateau in Shaanxi Province,China and constructed comprehensive evaluation models to quantify the cropland intensification and agroecosystem service in this area.Balance analysis and the coupling coordination degree model were used to evaluate the interactive relationship between cropland intensification and agroecosystem service,and statistical analysis and spatial autocorrelation were used to analyze the spatial characteristics and potential mechanism of the coupling coordination.Results show that both the cropland intensification and agroecosystem service in the study area were relatively low yet gradually increased from 2000 to 2020.Agroecosystem service lag was identified as the dominant unbalanced development type.Improving the supply capacity of agroecosystem services plays a key role in the balanced development of cropland in the Loess Plateau.The coupling coordination degree between cropland intensification and agroecosystem service ranges from basic coordination to serious incoordination.Therefore,cropland intensification practices in the area should be optimized to enhance this coordination degree.An upward trend was also observed in the coupling coordination degree from2000 to 2020.The withdrawal of marginal cropland in the Grain for Green program is one of the most important reasons for this trend,especially for the northern region.Around 83.6%of the high-high clusters are concentrated in the southern region of the Loess Plateau,whereas 70.5%of the low-low clusters are distributed in the northern region.These clustering characteristics are mainly attributed to the environmental suitability of these areas for agriculture and their degree of economic development.
文摘This article utilizes a large amount of statistical data to analyze the global distribution of foreign trade in China since 1990,as well as the factors involved and the changes in trends.The research results indicate that China has gained a favourable balance against developed countries and a disadvantageous balance against developing countries;China enjoys a trade surplus with North American and European countries while suffering deficits with those in the Asia.pacific region,as well as with resource-abundant Australia,Africa and South America. With regard to trends,the structure of China’s foreign trade will not undergo fundamental changes in the short term,but in the long run will be transformed in line with restructuring of the growth pattern.
基金This project is supported by National Natural Science Foundation of China(No.50365001).
文摘The laws of influence of different factors have been analyzed in order to enhance the working efficiency and fatigue life of the cleaning element in brush shape of the sugarcane harvester. Based on the principle of orthogonal experiment design, the virtual-orthogonal-experimental analysis for the cleaning element is carried out on the finite element analysis (FEA) software-ANSYS after analyzing the nonlinear structural behavior in the working procedure. The results are analyzed with the overall balancing method, and then the optimal combination is got, which is made up of different levels of different factors. Also the optimal combination of design parameters of the cleaning element received fiom the virtual experimental analysis is conducted an experiment to confirm that the virtual analysis model and results are right, and the effect of factors on the function of the cleaning element is obtained by more analysis and further optimizing.
基金Project supported by the National Natural Science Foundation of China (Grant No 10721403)the MOST of China (Grant No2009CB918500)the National Basic Research Program of China (Grant Nos 2006CB910706 and 2007CB814800)
文摘Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term‘noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states.
文摘ABSTRACT The role of ocean dynamics in maintaining the Pacific Decadal Variability (PDV) was investigated based on simulation results from the Parallel Ocean Program (POP) ocean general circulation model developed at the Los Alamos National Laboratory (LANL). A long-term control simulation of the LANL-POP model forced by a reconstructed coupled wind stress field over the period 1949-2001 showed that the ocean model not only simulates a reasonable climatology, but also produces a climate variability pattem very similar to observed PDV. In the Equatorial Pacific (EP) region, the decadal warming is confined in the thin surface layer. Beneath the surface, a strong compensating cooling, accompanied by a basin-wide-scale overturning circulation in opposition to the mean flow, occurs in the thermocline layer. In the North Pacific (NP) region, the decadal variability nonetheless exhibits a relatively monotonous pattern, characterized by the dominance of anomalous cooling and eastward flows. A term balance analysis of the perturbation heat budget equation was conducted to highlight the ocean's role in main- taining the PDV-like variability over the EP and NP regions. The analyses showed that strong oceanic adjustment must occur in the equatorial thermocline in association with the anomalous overturning circulation in order to maintain the PDV-like variability, including a flattening of the equatorial thermocline slpoe and an enhancement of the upper ocean's stratification (stability), as the climate shifts from a colder regime toward a warmer one. On the other hand, the oceanic response in the extratropical region seems to be confined to the surface layer, without much participation from the subsurface oceanic dynamics.
基金The project supported by 985 Startup Funding in PKU
文摘OBJECTIVE One of the long-expected goals of genome-scale metabolic modeling is to evaluate the influence of the perturbed enzymes to the yield of an expected end product.METHDOS Metabolic control analysis(MCA)performs such role to calculate the sensitivity of flux change upon that of enzymes under the framework of ordinary differential equation(ODE)models,which are restricted in small-scale networks and require explicit kinetic parameters.The constraint-based models,like flux balance analysis(FBA),lack of the room of performing MCA because they are parameters-free.In this study,we developed a hyper-cube shrink algorithm(HCSA)to incorporate the enzymatic properties to the FBA model by introducing a pair of parameters for each reaction.Our algorithm was able to handle not only prediction of knockout strains but also strains with an adjustment of expression level of certain enzymes.RESULTS We first showed the concept by applying HCSA to a simplest three-nodes network.Then we show the HCSA possesses Michaelis-Menten like behaviors characterized by steady state of ODE.We obtained good prediction of a synthetic network in Saccharomyces cerevisiae producing voilacein and analogues.Finally we showed its capability of predicting the flux distribution in genome-scale networks by applying it to sporulation in yeast.CONCLUSION We have developed an algorithm the impact on fluxes when certain enzymes were inhibited or activated.It provides us a powerful tool to evaluate the consequences of enzyme inhibitor or activator.
基金supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA401002-05).
文摘Sampling study is an effective exploration method, but the most extreme environments of hydrothermal vents pose considerable engineering challenges for sampling hydrothermal fluids. Moreover, traditional sampler systems with sample valves have difficulty in maintaining samples in situ pressure. However, decompression changes have effect on microorganisms sensitive to such stresses. To address the technical difficulty of collecting samples from hydrothermal vents, a new bidirectional high pressure-resistant sample valve with balanced poppet was designed. The sample valve utilizes a soft high performance plastic "PEEK" as poppet. The poppet with inapposite dimension is prone to occur to plastic deformation or rupture for high working pressure in experiments. To address this issue, based on the fmite element model, simulated results on stress distribution of the poppet with different structure parameters and preload spring force were obtained. The static axial deformations on top of the poppet were experimented. The simulated results agree with the experimental results. The new sample valve seals well and it can withstand high working pressure.
基金the National Natural Science Foundation of China (40971270)
文摘Considering energy security and greenhouse gas emission, many governments are developing bio-liquid fuel industries. The Chinese Government advocates the development of a fuel ethanol industry with non-food crops such as cassava. However, scientists debate the carbon emission of these bio-liquid fuels. The focuses are the influence of soil carbon pool destruction and by-product utilization. This study built a carbon balance analysis model, and assessed carbon emission of cassava fuel ethanol across its life cycle. The results show that the carbon emission of cassava fuel ethanol per kilogram in its life cycle was 0.457 kg under new technical conditions and 0.647 kg under old technical conditions. Carbon emission mainly came from the use of nitrogen fertilizer (9% of total emissions), the destruction of the soil carbon pool (29%) and fossil energy inputs (50%). Taking gasoline as a reference, the carbon emission of cassava fuel ethanol was 90% of that of gasoline. This percentage would drop to 64% if soil carbon pool destruction was avoided. Therefore, in order to promote the development of cassava fuel ethanol in China, farms should apply fertilizer properly, grow cassava on marginal land, and not alter land use patterns of woodland, grassland and other environments. In addition, we should exploit efficient fuel ethanol conversion technologies and strengthen the use of by-products.
基金Partial funding for this study was provided through a multistate hatch Grant from Oregon State University Agricultural Experiment Station to the corresponding author.
文摘Background Several enzymes and cofactors have been identified as contributing to the slow utilization of xylose by xylose-fermenting strains of Saccharomyces cerevisiae.However,there has been no consensus on which of these possible bottle-necks are the most important to address.A previous strain characterization study from our lab suggested that insufficient NAD+limits fermentation and may be the most important bottleneck affecting utilization of xylose for the production of ethanol.The development and validation of a genome scale dynamic flux balance model would help to verify the existence and extent of this and other metabolic bottlenecks and suggest solutions to guide future strain development thereby minimiz-ing bottleneck impact on process economics.Results A dynamic flux balance model was developed to identify bottlenecks in several strains of S.cerevisiae,both with wild-type pentose phosphate pathway expression and with the pathway over expressed.ZWF1 was found to be limiting in the oxidative portion of the pentose phosphate pathway under oxygen replete conditions.This pathway is used to regenerate NADPH.Under oxygen limiting conditions,respiration of xylose was limited by the lack of oxygen as a terminal electron acceptor.Ethanol production was also limited under these conditions due to the inability to balance NAD+/NADH.The model suggests the use of the anaplerotic glyoxylate pathway to improve NAD+/NADH balance,increasing ethanol produc-tion by 50%while producing succinate as a coproduct at upwards of 20 g/l.Conclusion In the production of high value chemicals from biomass,the use of the respiratory metabolism is a waste of feedstock carbon.Bottlenecks previously identified in the oxidative pentose phosphate pathway are currently only relevant under oxygen-replete conditions and cannot impact the partitioning of carbon between the respiratory and fermentative pathways.Focusing future efforts on the non-respiratory balancing of NAD+/NADH,perhaps through the glyoxylate pathway,would improve the economics of ethanol production both directly and through coproduct formation.
文摘We determine using a compound model the influence of the mass of granular matter on the behavior of a supercritical circulating fluidized bed (CFB) reactor. Population balance enables a stationary-regime modeling of the mass flow of granular matter inside a CFB unit in a large-scale. The simulation includes some important dynamic processes of gas-particle flows in fluidized bed such as attrition, fragmenta- tion, elutriation, and fuel combustion. Numerical calculations with full boiler loading were performed of operational parameters such as furnace temperature, furnace pressure, feeding materials mass flows, and excess air ratio. Furthermore, three bed inventory masses were adopted as experimental variables in the simulation model of mass balance. This approach enables a sensitivity study of mass flows of granular matter inside a CFB facility. Some computational results from this population balance model obtained for a supercritical CFB reactor are presented that show consistency with the operational data for large-scale CFB units.
基金the support of Commonwealth Research Commercialization Fund(CRCF)from the Center for Innovative Technology(CIT)of Virginia.
文摘Piezoelectric stack transducers in d33 mode have a much higher mechanical-to-electric energy conversion efficiency compared with d3l mode piezoelectric harvesters.However,multilayered piezoelectric stacks usually operate in off-resonance due to the higher stiffness and thereby have a lower power output under low-frequency excitations.This paper proposes to apply the dynamic magnetic pre-loading to a piezoelectric stack transducer to significantly increase the power output.The energy harvesting system consists of a multilayered piezoelectric stack with a compliant force amplification frame,a proof mass,and two magnets configured in attraction.The static force-displacement relationship of the magnets is identified from experiments and extended to a dynamic model capable of characterizing the dynamic magnetic interaction.An electromechanical model is developed based on the theoretical derivation and the experimentally identified parameters to predict the voltage outputs under different resistive loads.Approximate analytical solutions are derived by using the harmonic balance method and show good agreements with the numerical and experimental results.The performance of the system is examined and compared with that of the harvester without magnetic pre-loading.The influences of the distance between the two magnets and the electrical resistive loads on the power output are investigated.Results indicate the energy harvesting system with magnetic pre-loading can produce over thousand times more power than the system without magnetic pre-loading at the base excitation of 3 Hz and 0.5 m/s……2,far below the resonance at 243 Hz.
文摘A lab-scale intermittently aerated sequencing batch reactor(IASBR)was applied to treat anaerobically digested swine wastewater(ADSW)to explore the removal characteristics of veterinary antibiotics.The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand(COD)volumetric loadings,solid retention times(SRT)and ratios of COD to total nitrogen(TN)or COD/TN.Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics.Mass balance analysis revealed that greater than 60%of antibiotics in the influent were biodegraded in the IASBR,whereas averagely 24%were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium.Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand(COD)volumetric loadings,which could achieve up to 85.1%±1.4%at 0.17±0.041 kg COD/m-3/day,while dropped to 75.9%±1.3%and 49.3%±12.1%when COD volumetric loading increased to 0.65±0.032 and1.07±0.073 kg COD/m-3/day,respectively.Tetracyclines,the dominant antibiotics in ADSW,were removed by 87.9%in total at the lowest COD loading,of which 30.4%were contributed by sludge sorption and 57.5%by biodegradation,respectively.In contrast,sulfonamides were removed about 96.2%,almost by biodegradation.Long SRT seemed to have little obvious impact on antibiotics removal,while a shorter SRT of 30–40 day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge.Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work.
基金supported by the National Natural Science Foundation of China(No.60621002)
文摘This paper mainly discusses the analysis and design of a finline single-ended mixer and detector. In the circuit, for the purpose of eliminating high-order resonant modes and improving transition loss, metallic via holes are implemented along the mounting edge of the substrate embedded in the split-block of the WG-finline-microstrip transition. Meanwhile, a Ka band slow-wave and bandstop filter, which represents a reactive termination, is designed for the utilization of idle frequencies and operation frequencies energy. Full-wave analysis is carded out to optimize the input matching network of the mixer and the detector circuit using lumped elements to model the nonlinear diode. The exported S-matrix of the optimized circuit is used for conversion loss and voltage sensitivity analysis. The lowest measured conversion loss is 3.52 dB at 32.2 GHz; the conversion loss is flat and less than 5.68 dB in the frequency band of 29-34 GHz. The highest measured zero-bias voltage sensitivity is 1450 mV/mW at 38.6 GHz, and the sensitivity is better than 1000 mV/mW in the frequency band of 38-40 GHz.
基金supported by the Project of the Strategic Priority Research Program of Chinese Academy of Sciences(XDA2010010203)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0302)the Program for Innovative Research Team of Chinese Ministry of Education(IRT-17R50).
文摘Interactions between crops and livestock have been at the core of the evolution of many agricultural systems.In this paper,we review the development and characteristics of mixed crop-livestock systems,with a focus on grassland-based systems,as these cover large areas in China,and face several challenges.Following the transition from the original hunting and foraging systems to a sedentary lifestyle with integrated crop-livestock production systems some 8000 years ago,a range of different mixed systems have developed,depending on rainfall,solar radiation and temperature,culture and markets.We describe 5 main types of integrated systems,(1)livestock and rangeland,(2)livestock and grain production,(3)livestock and crop-grassland rotations,(4)livestock,crops and forest(silvo-pasture),and(5)livestock,crops and fish ponds.Next,two of these mixed systems are described in greater detail,i.e.,the mountain-oasis-desert system and its modifications in arid and semi-arid regions,and the integrated crop-livestock production systems on the Loess Plateau.In general,crop-livestock interactions in integrated systems have significant positive effects on crop production,livestock production,energy use efficiency and economic profitability.We conclude that improved integration of crop-livestock production systems is one of the most important ways for achieving a more sustainable development of animal agriculture in China.
文摘The objective of this study was to improve the production of butyric acid by process optimization using the metabolically engineered mutant of Clostridium tyrobutyricum (PAK-Em). First, the free-cell fermentation at pH 6.0 produced butyric acid with concentration of 38.44 g/L and yield of 0.42 g/g. Second, the immobilized- cell fermentations using fibrous-bed bioreactor (FBB) were run at pHs of 5.0, 5.5, 6.0, 6.5 and 7.0 to optimize fermentation process and improve the butyric acid production. It was found that the highest titer of butyric acid, 63.02g/L, was achieved at pH 6.5. Finally, the metabolic flux balance analysis was performed to inves- tigate the carbon rebalance in C. tyrobutyricum. The results show both gene manipulation and fermentation pH change redistribute carbon between biomass, acetic acid and butyric acid. This study demonstrated that high butyric acid production could be obtained by integrating metabolic engineering and fermentation process optimization.