Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear ...Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.展开更多
The time domain harmonic balance method is an attractive reduced order method of analyzing unsteady flow for turbomachines. However, the method can admit non-physical solutions. Non-physical solutions were encountered...The time domain harmonic balance method is an attractive reduced order method of analyzing unsteady flow for turbomachines. However, the method can admit non-physical solutions. Non-physical solutions were encountered from a three-blade-row compressor configuration in a time domain harmonic balance analysis. This paper aims to investigate the root cause of the non-physical solutions. The investigation involves several strategies, which include increasing the number of harmonics, increasing the number of time instants, including scattered modes,including the rotor-rotor interaction, and the use of a new method-the approximate time domain nonlinear harmonic method. Numerical analyses pertinent to each strategy are presented to reveal the root cause of the non-physical solution. It is found that the nonlinear interaction of unsteady flow components with different fundamental frequencies is the cause of the non-physical solution. The non-physical solution can be eliminated by incorporating extra scattered modes or using the approximate time domain nonlinear harmonic method.展开更多
A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Pe...A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Periodic solutions are obtained through harmonic balance method with alternating frequency/time domain(HB-AFT) technique, and then compared with the results of numerical simulation. Good agreement confirms the feasibility of HB-AFT scheme. Moreover, the Floquet theory is adopted to analyze motion stability of the system when rotor runs at different speed intervals. A simple strategy to determine the monodromy matrix is introduced and two ways towards unstability are found for periodic solutions: the period doubling bifurcation and the secondary Hopf bifurcation. The results obtained will contribute to the global response analysis and dynamic optimal design of rotor systems.展开更多
基金supported by the National Natural Science Foundation of China(No.10632040)
文摘Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.
基金National Natural Science Foundation of China(51976172)National Science and Technology Major Project (2017-II-0009-0023)+1 种基金China’s 111 project(B17037)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2023056)。
文摘The time domain harmonic balance method is an attractive reduced order method of analyzing unsteady flow for turbomachines. However, the method can admit non-physical solutions. Non-physical solutions were encountered from a three-blade-row compressor configuration in a time domain harmonic balance analysis. This paper aims to investigate the root cause of the non-physical solutions. The investigation involves several strategies, which include increasing the number of harmonics, increasing the number of time instants, including scattered modes,including the rotor-rotor interaction, and the use of a new method-the approximate time domain nonlinear harmonic method. Numerical analyses pertinent to each strategy are presented to reveal the root cause of the non-physical solution. It is found that the nonlinear interaction of unsteady flow components with different fundamental frequencies is the cause of the non-physical solution. The non-physical solution can be eliminated by incorporating extra scattered modes or using the approximate time domain nonlinear harmonic method.
基金supported by the National Basic Research Program of China("973" Project)(Grant No.2015CB057400)the National Natural Science Foundation of China(Grant No.11302058)
文摘A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Periodic solutions are obtained through harmonic balance method with alternating frequency/time domain(HB-AFT) technique, and then compared with the results of numerical simulation. Good agreement confirms the feasibility of HB-AFT scheme. Moreover, the Floquet theory is adopted to analyze motion stability of the system when rotor runs at different speed intervals. A simple strategy to determine the monodromy matrix is introduced and two ways towards unstability are found for periodic solutions: the period doubling bifurcation and the secondary Hopf bifurcation. The results obtained will contribute to the global response analysis and dynamic optimal design of rotor systems.