期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Co-doping method used to improve the charge transport balance in solution processed OLEDs
1
作者 HU Jun-tao WANG Peng +3 位作者 XIAO Xue HU Sheng XU Kai WANG Xiang-hua 《Optoelectronics Letters》 EI 2020年第6期423-427,共5页
In this paper, co-doping method is used to improve the current efficiency of solution-processed organic light-emitting diodes(OLEDs). By changing the ratio of two thermally activated delayed fluorescent(TADF) emitters... In this paper, co-doping method is used to improve the current efficiency of solution-processed organic light-emitting diodes(OLEDs). By changing the ratio of two thermally activated delayed fluorescent(TADF) emitters, we studied the performance of device and its mechanism. A solution processed OLED with a structure of indium tin oxide(ITO, 150 nm)/PEDOT:PSS(30 nm)/CBP:4 Cz IPN-x%:4 Cz PN-y%(30 nm)/TPBi(40 nm)/Li F(1 nm)/Al(100 nm) was fabricated. The current efficiencies of 26.6 cd/A and 26.4 cd/A were achieved by the devices with dopant ratio of 6% 4 Cz IPN:2% 4 Cz PN and 2% 4 Cz IPN:6% 4 Cz PN in emitting material layer(EML), respectively. By investigating the tendency of current density change in devices with different doping ratio, we suggested that the enhancement of the current efficiency should be due to the charge transport balance improvement induced by assist dopant in EML. 展开更多
关键词 PEDOT PSS CBP Co-doping method used to improve the charge transport balance in solution processed OLEDs
原文传递
Practical application of pressure regulating technology for fire district in Meiyukou Coal Mine
2
作者 章庆丰 贾宝山 《Journal of Coal Science & Engineering(China)》 2008年第4期546-549,共4页
Based on the simulated laboratory experiment of pressure balance for fire ex- tinguishing,the pressure regulating technology was summarized for the fire district in Meiyukou Coal Mine.The technology includes three mea... Based on the simulated laboratory experiment of pressure balance for fire ex- tinguishing,the pressure regulating technology was summarized for the fire district in Meiyukou Coal Mine.The technology includes three measures for air pressure regulation, namely applying the pressure regulating chamber to balance the air pressure of fire district, increasing the air pressure of the working face,and filling the ground surface fractures.A good effect was obtained to prevent and extinguish the fire.When the measures fail to in- crease the pressure of working face or to regulate that of air chamber,the measure to fill the ground surface fractures will play an important role. 展开更多
关键词 fire district pressure regulating technology pressure regulating process pressure balancing ventilation
下载PDF
Rapid mass loss and disappearance of summer-accumulation type hanging glacier
3
作者 Chun-Hai XU Zhong-Qin LI +2 位作者 Fei-Teng WANG Pu-Yu WANG Jian-Xin MU 《Advances in Climate Change Research》 SCIE CSCD 2022年第1期73-81,共9页
Hanging glaciers hold the absolute dominant number in West China and their changes had important influences on local hydrology,sea-level rise and natural hazards(snow/ice avalanches).However,logistic and operational d... Hanging glaciers hold the absolute dominant number in West China and their changes had important influences on local hydrology,sea-level rise and natural hazards(snow/ice avalanches).However,logistic and operational difficulties have resulted in the lack of in-situ-measured data,leaving us with poor knowledge of the changing behaviors of this type of glacier.Here,we presented the spatiotemporal pattern of seasonal and annual mass changes of a mid-latitude hanging glacier in the Tien Shan based on repeated terrestrial laser scanning(TLS)surveys during the period 2016-2018.The distributed glacier surface elevation changes exhibited highly spatiotemporal variability,and the winter elevation changes showed slight surface lowering at the upper elevations and weak thickening at the glacier terminus,which was contrary to altitudinal elevation changing patterns at the summer and annual scales.Mass balance processes of the hanging glacier mainly occurred during summer and the winter mass balance was nearly balanced(-0.10±0.15 m w.e.).The glacier exhibited more rapid mass loss than adjacent other morphological glacier and the estimated response time of the glacier to climate change was very short(6-9 years),indicating hanging glaciers will experience rapid wastage and disappearance in the future even with climate change mitigation. 展开更多
关键词 Hanging glaciers Mass balance processes Glacier disappearance Tien Shan Climate change
原文传递
Measurement, modelling, and closed-loop control of crystal shape distribution: Literature review and future perspectives 被引量:1
4
作者 Cai Y. Ma Jing J. Liu Xue Z. Wang 《Particuology》 SCIE EI CAS CSCD 2016年第3期1-18,共18页
Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too ... Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified. 展开更多
关键词 Crystal morphology Crystal shape distribution Morphological population balance mode3D process imaging Closed-loop control of crystal shapeCrystal facet growth kinetics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部