Purpose: This study introduces an algorithm to construct tag trees that can be used as a userfriendly navigation tool for knowledge sharing and retrieval by solving two issues of previous studies, i.e. semantic drift...Purpose: This study introduces an algorithm to construct tag trees that can be used as a userfriendly navigation tool for knowledge sharing and retrieval by solving two issues of previous studies, i.e. semantic drift and structural skew.Design/methodology/approach: Inspired by the generality based methods, this study builds tag trees from a co-occurrence tag network and uses the h-degree as a node generality metric. The proposed algorithm is characterized by the following four features:(1) the ancestors should be more representative than the descendants,(2) the semantic meaning along the ancestor-descendant paths needs to be coherent,(3) the children of one parent are collectively exhaustive and mutually exclusive in describing their parent, and(4) tags are roughly evenly distributed to their upper-level parents to avoid structural skew. Findings: The proposed algorithm has been compared with a well-established solution Heymann Tag Tree(HTT). The experimental results using a social tag dataset showed that the proposed algorithm with its default condition outperformed HTT in precision based on Open Directory Project(ODP) classification. It has been verified that h-degree can be applied as a better node generality metric compared with degree centrality.Research limitations: A thorough investigation into the evaluation methodology is needed, including user studies and a set of metrics for evaluating semantic coherence and navigation performance.Practical implications: The algorithm will benefit the use of digital resources by generating a flexible domain knowledge structure that is easy to navigate. It could be used to manage multiple resource collections even without social annotations since tags can be keywords created by authors or experts, as well as automatically extracted from text.Originality/value: Few previous studies paid attention to the issue of whether the tagging systems are easy to navigate for users. The contributions of this study are twofold:(1) an algorithm was developed to construct tag trees with consideration given to both semanticcoherence and structural balance and(2) the effectiveness of a node generality metric, h-degree, was investigated in a tag co-occurrence network.展开更多
Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc...Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations.展开更多
Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,w...Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,we propose a learningbased dynamic connectivity maintenance architecture to reduce the delay for the UAV-assisted device-todevice(D2D) multicast communication.In this paper,each UAV transmits information to a selected GU,and then other GUs receive the information in a multi-hop manner.To minimize the total delay while ensuring that all GUs receive the information,we decouple it into three subproblems according to the time division on the topology:For the cluster-head selection,we adopt the Whale Optimization Algorithm(WOA) to imitate the hunting behavior of whales by abstracting the UAVs and cluster-heads into whales and preys,respectively;For the D2D multi-hop link establishment,we make the best of social relationships between GUs,and propose a node mapping algorithm based on the balanced spanning tree(BST) with reconfiguration to minimize the number of hops;For the dynamic connectivity maintenance,Restricted Q-learning(RQL) is utilized to learn the optimal multicast timeslot.Finally,the simulation results show that our proposed algorithms perfor better than other benchmark algorithms in the dynamic scenario.展开更多
Massive data is written to blockchain systems for the destination of keeping safe. However, existing blockchain protocols still demand that each full node has to contain the entire chain. Most nodes quit because they ...Massive data is written to blockchain systems for the destination of keeping safe. However, existing blockchain protocols still demand that each full node has to contain the entire chain. Most nodes quit because they are unable to grow their storage space with the size of data. As the number of nodes decreases, the security of blockchains would significantly reduce. We present SE-Chain, a novel scale-out blockchain model that improves storage scalability under the premise of ensuring safety and achieves efficient retrieval. The SE-Chain consists of three parts:the data layer, the processing layer and the storage layer. In the data layer, each transaction is stored in the AB-M tree (Adaptive Balanced Merkle tree), which adaptively combines the advantages of balanced binary tree (quick retrieval) and Merkle tree (quick verification). In the processing layer, the full nodes store the part of the complete chain selected by the duplicate ratio regulation algorithm. Meanwhile, the node reliability verification method is used for increasing the stability of full nodes and reducing the risk of imperfect data recovering caused by the reduction of duplicate number in the storage layer. The experimental results on real datasets show that the query time of SE-Chain based on the AB-M tree is reduced by 17% when 16 nodes exist. Overall, SE-Chain improves the storage scalability extremely and implements efficient querying of transactions.展开更多
基金funded by the National Natural Science Foundation of China(Grand No.:70903008)supported by COGS Lab in School of Government,Beijing Normal University
文摘Purpose: This study introduces an algorithm to construct tag trees that can be used as a userfriendly navigation tool for knowledge sharing and retrieval by solving two issues of previous studies, i.e. semantic drift and structural skew.Design/methodology/approach: Inspired by the generality based methods, this study builds tag trees from a co-occurrence tag network and uses the h-degree as a node generality metric. The proposed algorithm is characterized by the following four features:(1) the ancestors should be more representative than the descendants,(2) the semantic meaning along the ancestor-descendant paths needs to be coherent,(3) the children of one parent are collectively exhaustive and mutually exclusive in describing their parent, and(4) tags are roughly evenly distributed to their upper-level parents to avoid structural skew. Findings: The proposed algorithm has been compared with a well-established solution Heymann Tag Tree(HTT). The experimental results using a social tag dataset showed that the proposed algorithm with its default condition outperformed HTT in precision based on Open Directory Project(ODP) classification. It has been verified that h-degree can be applied as a better node generality metric compared with degree centrality.Research limitations: A thorough investigation into the evaluation methodology is needed, including user studies and a set of metrics for evaluating semantic coherence and navigation performance.Practical implications: The algorithm will benefit the use of digital resources by generating a flexible domain knowledge structure that is easy to navigate. It could be used to manage multiple resource collections even without social annotations since tags can be keywords created by authors or experts, as well as automatically extracted from text.Originality/value: Few previous studies paid attention to the issue of whether the tagging systems are easy to navigate for users. The contributions of this study are twofold:(1) an algorithm was developed to construct tag trees with consideration given to both semanticcoherence and structural balance and(2) the effectiveness of a node generality metric, h-degree, was investigated in a tag co-occurrence network.
基金Project(2012CB725403)supported by the National Basic Research Program of ChinaProjects(71210001,51338008)supported by the National Natural Science Foundation of ChinaProject supported by World Capital Cities Smooth Traffic Collaborative Innovation Center and Singapore National Research Foundation Under Its Campus for Research Excellence and Technology Enterprise(CREATE)Programme
文摘Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations.
基金supported by the Future Scientists Program of China University of Mining and Technology(2020WLKXJ030)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX201993).
文摘Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,we propose a learningbased dynamic connectivity maintenance architecture to reduce the delay for the UAV-assisted device-todevice(D2D) multicast communication.In this paper,each UAV transmits information to a selected GU,and then other GUs receive the information in a multi-hop manner.To minimize the total delay while ensuring that all GUs receive the information,we decouple it into three subproblems according to the time division on the topology:For the cluster-head selection,we adopt the Whale Optimization Algorithm(WOA) to imitate the hunting behavior of whales by abstracting the UAVs and cluster-heads into whales and preys,respectively;For the D2D multi-hop link establishment,we make the best of social relationships between GUs,and propose a node mapping algorithm based on the balanced spanning tree(BST) with reconfiguration to minimize the number of hops;For the dynamic connectivity maintenance,Restricted Q-learning(RQL) is utilized to learn the optimal multicast timeslot.Finally,the simulation results show that our proposed algorithms perfor better than other benchmark algorithms in the dynamic scenario.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61472069,61402089 and U1401256China Postdoctoral Science Foundation under Grant Nos.2019T120216 and 2018M641705the Fundamental Research Funds for the Central Universities of China under Grant Nos.N2019007,N180408019 and N180101028.
文摘Massive data is written to blockchain systems for the destination of keeping safe. However, existing blockchain protocols still demand that each full node has to contain the entire chain. Most nodes quit because they are unable to grow their storage space with the size of data. As the number of nodes decreases, the security of blockchains would significantly reduce. We present SE-Chain, a novel scale-out blockchain model that improves storage scalability under the premise of ensuring safety and achieves efficient retrieval. The SE-Chain consists of three parts:the data layer, the processing layer and the storage layer. In the data layer, each transaction is stored in the AB-M tree (Adaptive Balanced Merkle tree), which adaptively combines the advantages of balanced binary tree (quick retrieval) and Merkle tree (quick verification). In the processing layer, the full nodes store the part of the complete chain selected by the duplicate ratio regulation algorithm. Meanwhile, the node reliability verification method is used for increasing the stability of full nodes and reducing the risk of imperfect data recovering caused by the reduction of duplicate number in the storage layer. The experimental results on real datasets show that the query time of SE-Chain based on the AB-M tree is reduced by 17% when 16 nodes exist. Overall, SE-Chain improves the storage scalability extremely and implements efficient querying of transactions.