期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Enhancing Navigability:An Algorithm for Constructing Tag Trees 被引量:1
1
作者 Chong Chen Pengcheng Luo 《Journal of Data and Information Science》 CSCD 2017年第2期56-75,共20页
Purpose: This study introduces an algorithm to construct tag trees that can be used as a userfriendly navigation tool for knowledge sharing and retrieval by solving two issues of previous studies, i.e. semantic drift... Purpose: This study introduces an algorithm to construct tag trees that can be used as a userfriendly navigation tool for knowledge sharing and retrieval by solving two issues of previous studies, i.e. semantic drift and structural skew.Design/methodology/approach: Inspired by the generality based methods, this study builds tag trees from a co-occurrence tag network and uses the h-degree as a node generality metric. The proposed algorithm is characterized by the following four features:(1) the ancestors should be more representative than the descendants,(2) the semantic meaning along the ancestor-descendant paths needs to be coherent,(3) the children of one parent are collectively exhaustive and mutually exclusive in describing their parent, and(4) tags are roughly evenly distributed to their upper-level parents to avoid structural skew. Findings: The proposed algorithm has been compared with a well-established solution Heymann Tag Tree(HTT). The experimental results using a social tag dataset showed that the proposed algorithm with its default condition outperformed HTT in precision based on Open Directory Project(ODP) classification. It has been verified that h-degree can be applied as a better node generality metric compared with degree centrality.Research limitations: A thorough investigation into the evaluation methodology is needed, including user studies and a set of metrics for evaluating semantic coherence and navigation performance.Practical implications: The algorithm will benefit the use of digital resources by generating a flexible domain knowledge structure that is easy to navigate. It could be used to manage multiple resource collections even without social annotations since tags can be keywords created by authors or experts, as well as automatically extracted from text.Originality/value: Few previous studies paid attention to the issue of whether the tagging systems are easy to navigate for users. The contributions of this study are twofold:(1) an algorithm was developed to construct tag trees with consideration given to both semanticcoherence and structural balance and(2) the effectiveness of a node generality metric, h-degree, was investigated in a tag co-occurrence network. 展开更多
关键词 Semantic coherence Structural balance Tag tree Resources navigation Algorithm
下载PDF
A two-stage short-term traffic flow prediction method based on AVL and AKNN techniques 被引量:1
2
作者 孟梦 邵春福 +2 位作者 黃育兆 王博彬 李慧轩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期779-786,共8页
Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc... Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations. 展开更多
关键词 engineering of communication and transportation system short-term traffic flow prediction advanced k-nearest neighbor method pattern recognition balanced binary tree technique
下载PDF
Learning-Based Dynamic Connectivity Maintenance for UAV-Assisted D2D Multicast Communication 被引量:1
3
作者 Jingjing Wang Yanjing Sun +3 位作者 Bowen Wang Shenshen Qian Zhijian Tian Xiaolin Wang 《China Communications》 SCIE CSCD 2023年第10期305-322,共18页
Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,w... Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,we propose a learningbased dynamic connectivity maintenance architecture to reduce the delay for the UAV-assisted device-todevice(D2D) multicast communication.In this paper,each UAV transmits information to a selected GU,and then other GUs receive the information in a multi-hop manner.To minimize the total delay while ensuring that all GUs receive the information,we decouple it into three subproblems according to the time division on the topology:For the cluster-head selection,we adopt the Whale Optimization Algorithm(WOA) to imitate the hunting behavior of whales by abstracting the UAVs and cluster-heads into whales and preys,respectively;For the D2D multi-hop link establishment,we make the best of social relationships between GUs,and propose a node mapping algorithm based on the balanced spanning tree(BST) with reconfiguration to minimize the number of hops;For the dynamic connectivity maintenance,Restricted Q-learning(RQL) is utilized to learn the optimal multicast timeslot.Finally,the simulation results show that our proposed algorithms perfor better than other benchmark algorithms in the dynamic scenario. 展开更多
关键词 cluster-head selection whale optimization algorithm(WOA) balanced spanning tree(BST) multi-hop link establishment dynamic connectivity maintenance
下载PDF
SE-Chain:A Scalable Storage and Efficient Retrieval Model for Blockchain 被引量:3
4
作者 Da-Yu Jia Jun-Chang Xin +2 位作者 Zhi-Qiong Wang Han Lei Guo-Ren Wang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2021年第3期693-706,共14页
Massive data is written to blockchain systems for the destination of keeping safe. However, existing blockchain protocols still demand that each full node has to contain the entire chain. Most nodes quit because they ... Massive data is written to blockchain systems for the destination of keeping safe. However, existing blockchain protocols still demand that each full node has to contain the entire chain. Most nodes quit because they are unable to grow their storage space with the size of data. As the number of nodes decreases, the security of blockchains would significantly reduce. We present SE-Chain, a novel scale-out blockchain model that improves storage scalability under the premise of ensuring safety and achieves efficient retrieval. The SE-Chain consists of three parts:the data layer, the processing layer and the storage layer. In the data layer, each transaction is stored in the AB-M tree (Adaptive Balanced Merkle tree), which adaptively combines the advantages of balanced binary tree (quick retrieval) and Merkle tree (quick verification). In the processing layer, the full nodes store the part of the complete chain selected by the duplicate ratio regulation algorithm. Meanwhile, the node reliability verification method is used for increasing the stability of full nodes and reducing the risk of imperfect data recovering caused by the reduction of duplicate number in the storage layer. The experimental results on real datasets show that the query time of SE-Chain based on the AB-M tree is reduced by 17% when 16 nodes exist. Overall, SE-Chain improves the storage scalability extremely and implements efficient querying of transactions. 展开更多
关键词 SE-Chain AB-M(adaptive balanced Merkle)tree efficient retrieval scale-out blockchain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部