The lignite-derived carbon from self-protection pyrolysis was employed to balance the fracturing and cold-welding of magnesium during ball milling.Particle size analysis indicates that the introduction of lignite-deri...The lignite-derived carbon from self-protection pyrolysis was employed to balance the fracturing and cold-welding of magnesium during ball milling.Particle size analysis indicates that the introduction of lignite-derived carbon can effectively reduce the particle size of Mg while the introduction of graphite does no help.Besides,the effect of lignite-derived carbon on crystallite size reduction of Mg is also better than graphite.A moderate cold-welding phenomenon was observed after ball-milling Mg with the lignite-derived carbon,suggesting less Mg is wasted on the milling vials and balls.Molecular dynamic simulations reveal that the balanced fracturing and cold-welding of magnesium during ball milling is mainly attributed to the special structure of the lignite-derived carbon:graphitized short-range ordered stacking function as dry lubricant and irregular shape/sharp edge function as milling aid.The preliminary findings in current study are expected to offer implications for designing efficient Mg-based hydrogen storage materials.展开更多
Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–gly...Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–glycerol system.Longer whiskers were obtained from crystal seeds prepared via hydration of DH for 30 s than via ball milling for 5 min followed by hydration for 20 s.The attachment of cetyltrimethyl ammonium bromide and glycerol additives to the whisker tops promoted whisker growth.The whisker sponges exhibited good thermal barrier properties and compression cycle stability.展开更多
In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicat...In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicated that the powder size significantly decreased,and the morphology of the Fe powder tended to be increasingly flat as the milling time increased.However,the prolonged milling duration had limited impact on the phase transition of the powder mixture.The main phases of all the samples sintered at 640℃ were α-Fe,α-Mn and Al,and a small amount of Fe2Al5 and Al8Mn5.When the sintering temperature increased to 1200℃,the phase composition was mainly comprised of γ-Fe and α-Fe.The weight loss fraction of the sintered sample decreased with milling time,i.e.,8.3wt% after 20 h milling compared to15.3wt% for 10 h.The Mn depletion region(MDR) for the 10,15,and 20 h milled samples was about 780,600,and 370 μm,respectively.The total porosity of samples sintered at 640℃ decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder.After sintering at 1200℃,the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%,respectively.The compressive strength and ductility of the 1200℃ sintered porous steel increased as the milling time increased.展开更多
Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi...Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.展开更多
Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C_(4)H_(4)N_(4) system,respectively.The phase structure,functional groups and synthesis mechanism were analyzed by XRD and FT-IR,and the diff...Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C_(4)H_(4)N_(4) system,respectively.The phase structure,functional groups and synthesis mechanism were analyzed by XRD and FT-IR,and the differences in the synthesis process of nano-AlN with different solid nitrogen sources were discussed.The results show that C3H6N6 has a stable triazine ring structure,and its chemical bond is firm and difficult to break,so AlN cannot be synthesized directly by solid-solid reaction at room temperature.However,there are a large number of nitrile groups(-CN)and amino groups(-NH_(2))in C_(4)H_(4)N_(4) molecules.Under the combined action of plasma bombardment and mechanical energy activation,C_(4)H_(4)N_(4) molecules undergo polycondensation and deamination,so that the ball milling tank is filled with a large number of active nitrogen-containing groups such as N=,≡N,etc.These groups and ball milling activated Al can synthesize nano-AlN at room temperature,with a conversion rate of 92%.SEM,DSC/TG analysis showed that the powder obtained by ball milling was formed by soft agglomeration of many fine primary particles about 50–80 nm.The surface morphology of the powder was loose and porous,and it had strong activity.After annealing at 800℃,the conversion rate of the Al+C_(4)H_(4)N_(4) system reached 99%.展开更多
Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocompo...Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocomposite materials of Mg and additives.In this experiment,TiF_(3)was selected as an additive,and the mechanical milling method was employed to prepare the experimental alloys.The alloys used in this experiment were the as-cast Ce_(5)Mg_(85)Ni_(10),as-milled Ce_(5)Mg_(85)Ni_(10)and Ce_(5)Mg_(85)Ni_(10)+3 wt.%TiF3.The phase transformation,structural evolution,isothermal and non-isothermal hydrogenation and dehydrogenation performances of the alloys were inspected by XRD,SEM,TEM,Sievert apparatus,DSC and TGA.It revealed that nanocrystalline appeared in the as-milled samples.Compared with the as-cast alloy,ball milling made the particle dimension and grain size decrease dramatically and the defect density increase significantly.The addition of TiF_(3)made the surface of ball milling alloy particles markedly coarser and more irregular.Ball milling and adding TiF_(3)distinctly improved the activation and kinetics of the alloys.Moreover,ball milling along with TiF_(3)can decrease the onset dehydrogenation temperature of Mg-based hydrides and slightly ameliorate their thermodynamics.展开更多
The preparation of γ-Fe<sub>2</sub>O<sub>3</sub>/Gd<sub>2</sub>O<sub>3</sub> nanocomposite for possible use in magnetic hyperthermia application was done by ball millin...The preparation of γ-Fe<sub>2</sub>O<sub>3</sub>/Gd<sub>2</sub>O<sub>3</sub> nanocomposite for possible use in magnetic hyperthermia application was done by ball milling technique. The nanocomposite was characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The heating efficiency and the effect of milling time (5 h and 30 h) on the structural and magnetic properties of the nanocomposite were reported. XRD analysis confirms the formation of the nanocomposite, while magnetization measurements show that the milled sample present hysteresis with low coercivity and remanence. The specific absorption rate (SAR) under an alternating magnetic field is investigated as a function of the milling time. A mean heating efficiency of 68 W/g and 28.7 W/g are obtained for 5 h and 30 h milling times respectively at 332 kHz and 170 Oe. The results showed that the obtained nanocomposite for 5 h milling time is a promising candidate for magnetic hyperthermia due to his properties which show an interesting magnetic behavior and high specific absorption rate.展开更多
ZnO varistor ceramics doped with Bi2O3, Sb2O3, CO2O3, Cr2O3, and MnO2 were prepared separately by two high-energy ball milling processes: oxide-doped and varistor ceramic powder. A comparison in the electrical and mi...ZnO varistor ceramics doped with Bi2O3, Sb2O3, CO2O3, Cr2O3, and MnO2 were prepared separately by two high-energy ball milling processes: oxide-doped and varistor ceramic powder. A comparison in the electrical and microstructural properties of the samples obtained by both methods was made. The best results on these characteristics were achieved through the high-energy ball milling varistor ceramic powder route, obtaining a nonlinear coefficient of 57 and a breakdown field of 617 V/mm at a sintering temperature of 1000 ℃ for 3 h. The samples synthesized by this technique show not only high density value, 95% of the theoretical density, but also a homogeneous microstructure, which compete with those obtained by the high-energy ball milling oxide-doped powder route. With the advantage that the high-energy ball milling varistor ceramic powder route can refine grain, increase the driving force of sintering, accelerate the sintering process, and reduce the sintering temperature.展开更多
Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders bal...Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.展开更多
Ti and Ag powders were mixed with different ball milling time (1, 2, 5 and 10 h) and sintered into porous Ti-3Ag alloys. The samples were treated with hydrothermal treatment, and their apatite-inducing abilities wer...Ti and Ag powders were mixed with different ball milling time (1, 2, 5 and 10 h) and sintered into porous Ti-3Ag alloys. The samples were treated with hydrothermal treatment, and their apatite-inducing abilities were further evaluated by immersion in modified simulated body fluid. The results indicate that the high surface energy brought by powder refinement leads to the decline of Ag, but promotes the oxidation of Ti during the sintering process. Meanwhile, the hydrothermal treated porous Ti-3Ag alloys prepared by the powders ball milled for 10 h possess the best apatite-inducing ability.展开更多
The effect of ball milling on the microstructural evolution was investigated during partial remelting of 6061 aluminum alloy prepared by cold-pressing of atomized alloy powders.The results indicate that the microstruc...The effect of ball milling on the microstructural evolution was investigated during partial remelting of 6061 aluminum alloy prepared by cold-pressing of atomized alloy powders.The results indicate that the microstructural evolution of 6061 aluminum alloy can be divided into three stages,the dissolution of eutectic phases and the coarsening and growth behavior of the resulting grains,structural separation and spheroidization of primary particles,and the final coarsening behavior of the particles.Compared with the alloy without ball milling,ball milling accelerates the first stage of microstructural evolution due to the energy stored in the powders,but the latter two stages are slowed down because of the formation of large-sized powders.Moreover,the finer the as-cold-pressed microstructure is,the smaller and more spherical the primary particles in the final semisolid microstructure are.Furthermore,properly elevating the heating temperature is beneficial for obtaining small and spheroidal particles.展开更多
The mechanochemical dechlorination of pentachlorophenol (PCP) was studied using CaO and SiO2 powder as additives. The effects of the milling time and additives on the dechlorination rate were investigated. The resul...The mechanochemical dechlorination of pentachlorophenol (PCP) was studied using CaO and SiO2 powder as additives. The effects of the milling time and additives on the dechlorination rate were investigated. The resulting product was characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), thermogravimetric analysis (TG) and ion chromatography (IC). It is found that grinding operation could dechlorinate PCP, with the formation of inorganic chloride and amorphous carbon. The addition of quartz to the grinding mixture facilitated dechlorination. On the basis of the experimental results, the decomposition mechanism was proposed. Decomposition predominantly proceeds through rupture of C-Cl bond in PCP molecule, followed by the formation of inorganic chlorides.展开更多
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le...Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.展开更多
The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing ...The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.展开更多
The cryogenic milling and milling in conjunction with dielectric barrier discharge plasma (DBDP) have been separately set up. The combined effect of low temperature and plasma on ball milling has been investigated by ...The cryogenic milling and milling in conjunction with dielectric barrier discharge plasma (DBDP) have been separately set up. The combined effect of low temperature and plasma on ball milling has been investigated by examining the refinement of particle size and grain size of iron powder using scanning electron microscopy, X-ray diffraction, and small angle X-ray scattering. It was found that the mean size of iron particles could reach 104nm only after 10 hours of ball milling in conjunction with DBDP, whereas a minimum average grain size of 8.4nm was obtained by cryomilling at -20℃; however, it is difficult to refine the particle size and grain size under the same milling condition in the absence of DBDP and cryogenic temperature.展开更多
Ball milling modification was performed on Cs/X catalysts before or after cesium ion exchange.Multiple characterization results(such as pyridine-FTIR,XPS,and solid-state NMR)demonstrated that ball milling played a dis...Ball milling modification was performed on Cs/X catalysts before or after cesium ion exchange.Multiple characterization results(such as pyridine-FTIR,XPS,and solid-state NMR)demonstrated that ball milling played a distinct role in these two different preparation procedures of the catalyst.Ball milling performed after the cesium modification has a strong influence on the Cs/X structure and acid-base properties,which results in the enhancement of the catalytic performance for side-chain methylation of toluene with methanol.Detailed studies revealed that ball milling intensified the interactions between oxides and molecular sieves,which not only increased the dispersion of the Cs species but also generated some weaker basic centers.It is proposed that the new basic centers could be Si-O-Cs and Al-O-Cs,which are produced by breaking of the Si-O-Al bonds of the zeolite framework under the synergetic effect of ball milling and alkali treatment.These new active sites may help to promote the side-chain methylation reaction.However,excessive ball milling will lead to the vanishing of zeolite micropores,thus deactivating side-chain methylation activity,which indicates that microporosity plays a key role in side-chain methylation and individual basic centers cannot catalyze this reaction.展开更多
The amorphous Mg_(0.94)La_(0.06)Ni alloy was synthesized by ball milling for different time at 400 r·min^(-1). Electrochemical performances of the alloy electrodes were investigated and the results show that the ...The amorphous Mg_(0.94)La_(0.06)Ni alloy was synthesized by ball milling for different time at 400 r·min^(-1). Electrochemical performances of the alloy electrodes were investigated and the results show that the specimens would reach their maximum electrochemical discharge capacities at the first charge/discharge cycle. The cyclic tests and X-ray diffraction (XRD) results show that discharge capacities would decrease rapidly due to the crystallization of the amorphous and the oxidization of magnesium on the particle surface during the electrochemical charge/discharge cycling. In addition, the DTA and SEM results reveal that the thermal stabilities will be improved and the size of the alloy will be decreased with the ball-milling time. The amorphous Mg_(0.96)La_(0.04)Ni alloy prepared by ball milling for 40 h at 400 r·min^(-1) shows the best electrochemical properties.展开更多
The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron m...The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.展开更多
In recent years, transition-metal oxides(TMOs) have been long employed for aerobic oxidative desulfurization. However, the inherent bottlenecks, such as the low explosion of active sites, limit the application of bulk...In recent years, transition-metal oxides(TMOs) have been long employed for aerobic oxidative desulfurization. However, the inherent bottlenecks, such as the low explosion of active sites, limit the application of bulk TMOs catalyst. In this study, V_(2)O_(5) nanoparticles with oxygen vacancies were prepared in large-scale via facile ball milling strategy with adding oxalic acid as a reducing agent. The as-prepared catalysts exhibit remarkable sulfur removal for oils with different initial S-concentrations and different substrates. Sulfur removal could reach up to 99.7%(< 2 ppm) under the optimized reaction conditions. This work provides a feasible desulfurization strategy for fuel oils.展开更多
In order to explore the high efficiency of fabricating nanocrystalline WC-Co composite powders, this paper presented a unique high energy ball milling process with variable rotation rate and repeatious circulation, by...In order to explore the high efficiency of fabricating nanocrystalline WC-Co composite powders, this paper presented a unique high energy ball milling process with variable rotation rate and repeatious circulation, by which nanocrystalline WC-10Co-0.8VC-0.2Cr3C2 (wt pct) composite powders with mean grain size of 25 nm were prepared in 32 min, and the quantity of the powders for a batch was as much as 800 grams. The as-prepared powders were analyzed and characterized by chemical analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential thermal analysis (DTA). The results show that high energy ball milling with variable rotation rates and repeatious circulation could be used to produce nanocrystalline WC-Co powder composites with high efficiency. The compositions of the powders meet its specifications with low impurity content. The mean grain size decreases, lattice distortion and system energy increase with increasing the milling time. The morphology of nanocrystalline WC-Co particles displays dominantiy sphere shape and their particle sizes are all lower than 80 nm. The eutectic temperature of the nanocrystalline WC-10Co-0.8VC-0.2Cr3C2 composites is about 1280℃.展开更多
基金Funded by the Shandong Provincial Natural Science Foundation(No.ZR2022MB060)the Project of Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation Team(Hydrogen Energy Chemistry Innovation Team)。
文摘The lignite-derived carbon from self-protection pyrolysis was employed to balance the fracturing and cold-welding of magnesium during ball milling.Particle size analysis indicates that the introduction of lignite-derived carbon can effectively reduce the particle size of Mg while the introduction of graphite does no help.Besides,the effect of lignite-derived carbon on crystallite size reduction of Mg is also better than graphite.A moderate cold-welding phenomenon was observed after ball-milling Mg with the lignite-derived carbon,suggesting less Mg is wasted on the milling vials and balls.Molecular dynamic simulations reveal that the balanced fracturing and cold-welding of magnesium during ball milling is mainly attributed to the special structure of the lignite-derived carbon:graphitized short-range ordered stacking function as dry lubricant and irregular shape/sharp edge function as milling aid.The preliminary findings in current study are expected to offer implications for designing efficient Mg-based hydrogen storage materials.
基金supported by the Degradable Plastics Engineering Research Center of Yunnan Provincial Education Department(KKPU202205001).
文摘Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–glycerol system.Longer whiskers were obtained from crystal seeds prepared via hydration of DH for 30 s than via ball milling for 5 min followed by hydration for 20 s.The attachment of cetyltrimethyl ammonium bromide and glycerol additives to the whisker tops promoted whisker growth.The whisker sponges exhibited good thermal barrier properties and compression cycle stability.
基金financially supported by the National Key R&D Program of China(No.2021YFB3802300)the National Natural Science Foundation of China(No.51804239)Guangdong Major Project of Basic and Applied Basic Research,China(No.2021B0301030001)。
文摘In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicated that the powder size significantly decreased,and the morphology of the Fe powder tended to be increasingly flat as the milling time increased.However,the prolonged milling duration had limited impact on the phase transition of the powder mixture.The main phases of all the samples sintered at 640℃ were α-Fe,α-Mn and Al,and a small amount of Fe2Al5 and Al8Mn5.When the sintering temperature increased to 1200℃,the phase composition was mainly comprised of γ-Fe and α-Fe.The weight loss fraction of the sintered sample decreased with milling time,i.e.,8.3wt% after 20 h milling compared to15.3wt% for 10 h.The Mn depletion region(MDR) for the 10,15,and 20 h milled samples was about 780,600,and 370 μm,respectively.The total porosity of samples sintered at 640℃ decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder.After sintering at 1200℃,the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%,respectively.The compressive strength and ductility of the 1200℃ sintered porous steel increased as the milling time increased.
基金supported by the National Natural Science Foundation of China (22008098, 21978156, 42002040)the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (21IRTSTHN004)+1 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (22HASTIT008)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2022-K34)。
文摘Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.
基金The study was supported by the Education and Research Project for Young and Middle-Aged Teachers in Fujian Province(JAT201167).
文摘Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C_(4)H_(4)N_(4) system,respectively.The phase structure,functional groups and synthesis mechanism were analyzed by XRD and FT-IR,and the differences in the synthesis process of nano-AlN with different solid nitrogen sources were discussed.The results show that C3H6N6 has a stable triazine ring structure,and its chemical bond is firm and difficult to break,so AlN cannot be synthesized directly by solid-solid reaction at room temperature.However,there are a large number of nitrile groups(-CN)and amino groups(-NH_(2))in C_(4)H_(4)N_(4) molecules.Under the combined action of plasma bombardment and mechanical energy activation,C_(4)H_(4)N_(4) molecules undergo polycondensation and deamination,so that the ball milling tank is filled with a large number of active nitrogen-containing groups such as N=,≡N,etc.These groups and ball milling activated Al can synthesize nano-AlN at room temperature,with a conversion rate of 92%.SEM,DSC/TG analysis showed that the powder obtained by ball milling was formed by soft agglomeration of many fine primary particles about 50–80 nm.The surface morphology of the powder was loose and porous,and it had strong activity.After annealing at 800℃,the conversion rate of the Al+C_(4)H_(4)N_(4) system reached 99%.
基金the National Natural Science Foundation of China(Nos.51871125,51761032,52001005 and 51731002)Major Science and Technology Innovation Projects in Shandong Province(No.2019JZZY010320)for financial support of the work.
文摘Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocomposite materials of Mg and additives.In this experiment,TiF_(3)was selected as an additive,and the mechanical milling method was employed to prepare the experimental alloys.The alloys used in this experiment were the as-cast Ce_(5)Mg_(85)Ni_(10),as-milled Ce_(5)Mg_(85)Ni_(10)and Ce_(5)Mg_(85)Ni_(10)+3 wt.%TiF3.The phase transformation,structural evolution,isothermal and non-isothermal hydrogenation and dehydrogenation performances of the alloys were inspected by XRD,SEM,TEM,Sievert apparatus,DSC and TGA.It revealed that nanocrystalline appeared in the as-milled samples.Compared with the as-cast alloy,ball milling made the particle dimension and grain size decrease dramatically and the defect density increase significantly.The addition of TiF_(3)made the surface of ball milling alloy particles markedly coarser and more irregular.Ball milling and adding TiF_(3)distinctly improved the activation and kinetics of the alloys.Moreover,ball milling along with TiF_(3)can decrease the onset dehydrogenation temperature of Mg-based hydrides and slightly ameliorate their thermodynamics.
文摘The preparation of γ-Fe<sub>2</sub>O<sub>3</sub>/Gd<sub>2</sub>O<sub>3</sub> nanocomposite for possible use in magnetic hyperthermia application was done by ball milling technique. The nanocomposite was characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The heating efficiency and the effect of milling time (5 h and 30 h) on the structural and magnetic properties of the nanocomposite were reported. XRD analysis confirms the formation of the nanocomposite, while magnetization measurements show that the milled sample present hysteresis with low coercivity and remanence. The specific absorption rate (SAR) under an alternating magnetic field is investigated as a function of the milling time. A mean heating efficiency of 68 W/g and 28.7 W/g are obtained for 5 h and 30 h milling times respectively at 332 kHz and 170 Oe. The results showed that the obtained nanocomposite for 5 h milling time is a promising candidate for magnetic hyperthermia due to his properties which show an interesting magnetic behavior and high specific absorption rate.
基金Project (BK2011243) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject (EIPE11204) supported by the State Key Laboratory of Electrical Insulation and Power Equipment,China+4 种基金Project (KF201104) supported by the State Key Laboratory of New Ceramic and Fine Processing,ChinaProject (KFJJ201105) supported by the Opening Project of State Key Laboratory of Electronic Thin Films and Integrated Devices,ChinaProject (2011-22) supported by State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,ChinaProject (10KJD430002) supported by the Universities Natural Science Research Project of Jiangsu Province,ChinaProject (11JDG084) supported by the Research Foundation of Jiangsu University,China
文摘ZnO varistor ceramics doped with Bi2O3, Sb2O3, CO2O3, Cr2O3, and MnO2 were prepared separately by two high-energy ball milling processes: oxide-doped and varistor ceramic powder. A comparison in the electrical and microstructural properties of the samples obtained by both methods was made. The best results on these characteristics were achieved through the high-energy ball milling varistor ceramic powder route, obtaining a nonlinear coefficient of 57 and a breakdown field of 617 V/mm at a sintering temperature of 1000 ℃ for 3 h. The samples synthesized by this technique show not only high density value, 95% of the theoretical density, but also a homogeneous microstructure, which compete with those obtained by the high-energy ball milling oxide-doped powder route. With the advantage that the high-energy ball milling varistor ceramic powder route can refine grain, increase the driving force of sintering, accelerate the sintering process, and reduce the sintering temperature.
基金Project(51104066)supported by the National Natural Science Foundation of ChinaProjects(2015A010105011,2015A020214008)supported by Science and Technology Program of Guangdong Province,ChinaProject(201505040925029)supported by Science and Technology Research Program of Guangzhou,China
文摘Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.
基金Projects(2012CB619102,2012CB619100)supported by the National Basic Research Program of ChinaProjects(2011AA030101,2011AA030103)supported by the High-tech Research and Development Program of China+1 种基金Projects(HEUCFZ1017,HEUCFR1020)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(ZD201012)supported by the Natural Science Foundation of Heilongjiang Province,China
文摘Ti and Ag powders were mixed with different ball milling time (1, 2, 5 and 10 h) and sintered into porous Ti-3Ag alloys. The samples were treated with hydrothermal treatment, and their apatite-inducing abilities were further evaluated by immersion in modified simulated body fluid. The results indicate that the high surface energy brought by powder refinement leads to the decline of Ag, but promotes the oxidation of Ti during the sintering process. Meanwhile, the hydrothermal treated porous Ti-3Ag alloys prepared by the powders ball milled for 10 h possess the best apatite-inducing ability.
基金Project(G2010CB635106)supported by the National Basic Research Program of ChinaProject(NCET-10-0023)supported by the Program for New Century Excellent Talents in University of China+1 种基金Project supported by the Program for Hongliu Outstanding Talents of Lanzhou University of Technology,ChinaProject(2014-07)supported by the Basic Scientific Research Expenses of Gansu University,China
文摘The effect of ball milling on the microstructural evolution was investigated during partial remelting of 6061 aluminum alloy prepared by cold-pressing of atomized alloy powders.The results indicate that the microstructural evolution of 6061 aluminum alloy can be divided into three stages,the dissolution of eutectic phases and the coarsening and growth behavior of the resulting grains,structural separation and spheroidization of primary particles,and the final coarsening behavior of the particles.Compared with the alloy without ball milling,ball milling accelerates the first stage of microstructural evolution due to the energy stored in the powders,but the latter two stages are slowed down because of the formation of large-sized powders.Moreover,the finer the as-cold-pressed microstructure is,the smaller and more spherical the primary particles in the final semisolid microstructure are.Furthermore,properly elevating the heating temperature is beneficial for obtaining small and spheroidal particles.
基金supported by the National Natural Science Foundation of China (No. 50776081)the Doctoral Program of Higher Education (No. 20060335129)the Project on Science and Technology of Zhejiang Province of China (No. 2008C23090)
文摘The mechanochemical dechlorination of pentachlorophenol (PCP) was studied using CaO and SiO2 powder as additives. The effects of the milling time and additives on the dechlorination rate were investigated. The resulting product was characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), thermogravimetric analysis (TG) and ion chromatography (IC). It is found that grinding operation could dechlorinate PCP, with the formation of inorganic chloride and amorphous carbon. The addition of quartz to the grinding mixture facilitated dechlorination. On the basis of the experimental results, the decomposition mechanism was proposed. Decomposition predominantly proceeds through rupture of C-Cl bond in PCP molecule, followed by the formation of inorganic chlorides.
文摘Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.
基金Project supported by National Natural Science Foundation of China (50471045) Shanghai Nano-Technology PromotionCenter (0452nm026)
文摘The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.
基金This work was supported by the National natural Science Foundation(No.50371027)the team project from Natural Science Foundation of Guangdong Province and Natural Science Foundation of Fujian Province(No.E0440001).
文摘The cryogenic milling and milling in conjunction with dielectric barrier discharge plasma (DBDP) have been separately set up. The combined effect of low temperature and plasma on ball milling has been investigated by examining the refinement of particle size and grain size of iron powder using scanning electron microscopy, X-ray diffraction, and small angle X-ray scattering. It was found that the mean size of iron particles could reach 104nm only after 10 hours of ball milling in conjunction with DBDP, whereas a minimum average grain size of 8.4nm was obtained by cryomilling at -20℃; however, it is difficult to refine the particle size and grain size under the same milling condition in the absence of DBDP and cryogenic temperature.
文摘Ball milling modification was performed on Cs/X catalysts before or after cesium ion exchange.Multiple characterization results(such as pyridine-FTIR,XPS,and solid-state NMR)demonstrated that ball milling played a distinct role in these two different preparation procedures of the catalyst.Ball milling performed after the cesium modification has a strong influence on the Cs/X structure and acid-base properties,which results in the enhancement of the catalytic performance for side-chain methylation of toluene with methanol.Detailed studies revealed that ball milling intensified the interactions between oxides and molecular sieves,which not only increased the dispersion of the Cs species but also generated some weaker basic centers.It is proposed that the new basic centers could be Si-O-Cs and Al-O-Cs,which are produced by breaking of the Si-O-Al bonds of the zeolite framework under the synergetic effect of ball milling and alkali treatment.These new active sites may help to promote the side-chain methylation reaction.However,excessive ball milling will lead to the vanishing of zeolite micropores,thus deactivating side-chain methylation activity,which indicates that microporosity plays a key role in side-chain methylation and individual basic centers cannot catalyze this reaction.
文摘The amorphous Mg_(0.94)La_(0.06)Ni alloy was synthesized by ball milling for different time at 400 r·min^(-1). Electrochemical performances of the alloy electrodes were investigated and the results show that the specimens would reach their maximum electrochemical discharge capacities at the first charge/discharge cycle. The cyclic tests and X-ray diffraction (XRD) results show that discharge capacities would decrease rapidly due to the crystallization of the amorphous and the oxidization of magnesium on the particle surface during the electrochemical charge/discharge cycling. In addition, the DTA and SEM results reveal that the thermal stabilities will be improved and the size of the alloy will be decreased with the ball-milling time. The amorphous Mg_(0.96)La_(0.04)Ni alloy prepared by ball milling for 40 h at 400 r·min^(-1) shows the best electrochemical properties.
基金This work was supported by State Key Laboratory for Powder Metallurgy of China. We are grateful to the staff of Hu'nan Yin Zhou Nonferrous Metals Hi-Tech. Ltd. Company for cemented carbides powders.
文摘The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.
基金financial support from the National Natural Science Foundation of China(21722604)China Postdoctoral Science Foundation(2020M671364,2020M671365)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20190243)the Qinglan Project of Jiangsu Province,and the Society Development Fund of Zhenjiang(SH2020020)。
文摘In recent years, transition-metal oxides(TMOs) have been long employed for aerobic oxidative desulfurization. However, the inherent bottlenecks, such as the low explosion of active sites, limit the application of bulk TMOs catalyst. In this study, V_(2)O_(5) nanoparticles with oxygen vacancies were prepared in large-scale via facile ball milling strategy with adding oxalic acid as a reducing agent. The as-prepared catalysts exhibit remarkable sulfur removal for oils with different initial S-concentrations and different substrates. Sulfur removal could reach up to 99.7%(< 2 ppm) under the optimized reaction conditions. This work provides a feasible desulfurization strategy for fuel oils.
文摘In order to explore the high efficiency of fabricating nanocrystalline WC-Co composite powders, this paper presented a unique high energy ball milling process with variable rotation rate and repeatious circulation, by which nanocrystalline WC-10Co-0.8VC-0.2Cr3C2 (wt pct) composite powders with mean grain size of 25 nm were prepared in 32 min, and the quantity of the powders for a batch was as much as 800 grams. The as-prepared powders were analyzed and characterized by chemical analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential thermal analysis (DTA). The results show that high energy ball milling with variable rotation rates and repeatious circulation could be used to produce nanocrystalline WC-Co powder composites with high efficiency. The compositions of the powders meet its specifications with low impurity content. The mean grain size decreases, lattice distortion and system energy increase with increasing the milling time. The morphology of nanocrystalline WC-Co particles displays dominantiy sphere shape and their particle sizes are all lower than 80 nm. The eutectic temperature of the nanocrystalline WC-10Co-0.8VC-0.2Cr3C2 composites is about 1280℃.