期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dry ball milling and wet ball milling for fabricating copper-yttria composites 被引量:1
1
作者 Fei Huang Hang Wang +1 位作者 Jin-Shui Chen Bin Yang 《Rare Metals》 SCIE EI CAS CSCD 2018年第10期859-867,共9页
Yttria-reinforced copper matrix composites were prepared by dry ball milling (DBM) and wet ball milling (WBM), respectively, followed by spark plasma sintering (SPS). It is to determine which milling process is ... Yttria-reinforced copper matrix composites were prepared by dry ball milling (DBM) and wet ball milling (WBM), respectively, followed by spark plasma sintering (SPS). It is to determine which milling process is better for fabricating Cu-Y2O3 composites. It is found that Cu-Y2O3 composites synthesized by DBM exhibit better densification, mechanical and electrical properties than those by WBM. Less agglomeration of reinforcements in the bulk composites by DBM is responsible for the better perfor- mances. To further understand the reason of less agglomeration of Y2O3 in the bulks by DBM, morphologies of prepared powders were investigated and analyzed. Higher ball's impact energy and the formation of copper oxide on the matrix surface during DBM process contribute to small matrix particles, which is beneficial for less agglomeration. 展开更多
关键词 Cu-Y2O3 composites Dry ball milling Wet ball milling Spark plasma sintering Morphology
原文传递
Preparation of Al matrix nanocomposites by diluting the composite granules containing nano-SiCp under ultrasonic vibaration 被引量:6
2
作者 Shulin Lü Pan Xiao +2 位作者 Du Yuan Kun Hu Shusen Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第9期1609-1617,共9页
In this work, an efficient process by diluting the nano-SiCp/Al composite granules in the molten matrix under ultrasonic vibration(UV) was developed to prepare metal matrix nano-composites(MMNCs).Millimeter-sized ... In this work, an efficient process by diluting the nano-SiCp/Al composite granules in the molten matrix under ultrasonic vibration(UV) was developed to prepare metal matrix nano-composites(MMNCs).Millimeter-sized composite granules with high content of SiC particle(8 wt%) were specially fabricated by dry high-energy ball milling(HBM) without process control agent, and then remelted and diluted in molten Al alloy under UV. The MMNCs melt was finally squeeze cast under a squeeze pressure of 200 MPa, Microstructure of the composite granules during dry HBM was investigated, and the effect of UV on microstructure and mechanical properties of the MMNCs was discussed. The results indicate that nano-SiC particles are uniformly distributed in the nano-SiCp/Al composite granules, which are covered by vestures of pure Al. During diluting, nano-SiC particles released from the composite granules are quickly dispersed in the molten matrix by UV within 4 min. Microstructure of MMNCs is significantly refined under UV and squeeze casting, eutectic Si phase modified to fine islands with an average length of 1.4 μm. Tensile strength of the squeeze cast MMNCs with 1 wt% of nano-SiC particles is 269 MPa, which is improved by 25% compared with the A356 alloy matrix. 展开更多
关键词 Al matrix nano-composites Dry high-energy ball milling Ultrasonic vibration Composite granules Microstructure
原文传递
Insights on pretreatment of Indian hematite fines in grate-kiln pelletizing process: the choice of grinding processes 被引量:4
3
作者 De-qing Zhu Zheng-qi Guo +1 位作者 Jian Pan Zhao-yuan Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第5期506-514,共9页
Indian hematite fines are normally characterized by high iron grade and minor impurities, which are usually used for sinter fines. With macroscale operations technology of blast furnace in Indian, pellets, as a kind o... Indian hematite fines are normally characterized by high iron grade and minor impurities, which are usually used for sinter fines. With macroscale operations technology of blast furnace in Indian, pellets, as a kind of high-quality materials, attract more and more attention. However, the hematite fines possess the coarse size. Hence, they inevitably need to be further finely ground for pelletizing before balling. The grinding behavior of Indian hematite fines was revealed by conducting the ball milling tests and determining the Bond ball mill work index (Wi). The results show that Indian hematite fines have an excellent grindability with Wi of only 7.40-7.73 kWh/t, indicating that ball milling is an economically viable way to pretreat Indian hematite fines. Nonetheless, due to poor sedimentation and filtering properties of wet ground products, the dry ball milling is more appropriate to process Indian hematite fines. In addition, the superior quality green balls can be manufactured with dry ground products under the conditions of 0.5% bentonite dosage, 7.5% moisture and balling for 12 min, which further confirmed that the recommended pellet feed preparation technique is reasonable. 展开更多
关键词 Indian hematite fine · Dry ball milling · Wet ball milling · Bond work index · Sedimentation characteristic ·Filtration characteristic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部