The influence of high energy ball milling on Al 30Si powder and ceramic particulate SiC was studied by means of SEM, XRD and DSC. The results show that Al 30Si powder and their microstructure are obviously refined aft...The influence of high energy ball milling on Al 30Si powder and ceramic particulate SiC was studied by means of SEM, XRD and DSC. The results show that Al 30Si powder and their microstructure are obviously refined after high energy ball milling process. The alloy powder and SiC p stick closely to each other without interfacial reaction. DSC results detect no reaction but relaxation of the samples. So high energy ball milling can be used as an effective method for ceramic particulate pre treatment in the fabrication of MMC.展开更多
The variation of microstucture and phase structure of metal Cr and Al powders prepared by high energy mechanical milling was analyzed and investigated.The results show that with the continuous balling the average grai...The variation of microstucture and phase structure of metal Cr and Al powders prepared by high energy mechanical milling was analyzed and investigated.The results show that with the continuous balling the average grain sizes of the brittle Cr powders are gradually decreased,and the diffraction peaks are widened and the peak values lower owing to the interrelation caused by both cold welding and breaking;the tough Al powders exhibit intense cold welding,and most of powders lead to adhesion to ball surface and pot wall,meanwhile,the Al powders subjected to intense deformation have led to many dislocation rings with non dislocation wind up found in the microstructure.展开更多
The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron m...The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.展开更多
Broadening and height reduction of X-ray diffraction peaks were observed after cold-pressing of unmilled Co-W powder mixture. It seems the effect of cold pressing has slightly reduced the lattice parameter of W from 3...Broadening and height reduction of X-ray diffraction peaks were observed after cold-pressing of unmilled Co-W powder mixture. It seems the effect of cold pressing has slightly reduced the lattice parameter of W from 3.165 to 3.143?. Consequent annealing of unmilled compacts yielded metastable phases. Upon 10 and 20 h ball milling of Co-W powder, no alloying was obtained. Although milling did not yield significant crystal changes in W and Co ground state structures, its effect is evident during subsequent annealing. An eta phase is obtained for the first time from unmilled-annealed Co-W powder mixture in the absence of interstitial elements like carbon, while the milled counterpart yielded the rhombohedral Co7W6-type phase with composition deviated from stoichiometric value.展开更多
This study investigated the effects of carbon nanotube (CNT) concentration on the micro-morphologies and laser absorption proper- ties of CNT/AlSi10Mg composite powders produced by high-energy ball milling. A scanni...This study investigated the effects of carbon nanotube (CNT) concentration on the micro-morphologies and laser absorption proper- ties of CNT/AlSi10Mg composite powders produced by high-energy ball milling. A scanning electron microscope, X-ray diffractometer, laser particle size analyzer, high-temperature synchronous thermal analyzer, and UV/VIS/NIR spectrophotometer were used for the analysis of micro- graphs, phases, granulometric parameters, thermal properties, and laser absorption properties of the composite powders, respectively. The results showed that the powders gradually changed from flake- to granule-like morphology and the average particle size sharply decreased with in- creases in milling rotational speed and milling time. Moreover, a uniform dispersion of CNTs in AlSi10Mg powders was achieved only for a CNT content of 1.5wt%. Laser absorption values of the composite powders were also observed to gradually increase with the increase of CNT concentration, and different spectra displayed characteristic absorption peaks at a wavelength of approximately 826 nm.展开更多
High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretr...High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretreatment process using traditional cheap zirconium dioxide powder (ZrO2), magnesium powder (Mg) and sucrose (C12H22Oll) as raw materials. FSEM, TEM, HRTEM, SAED, XRD, FTIR and Raman, ICP- AES, laser particle size analyzer, oxygen and nitrogen analyzer, carbon/sulfur determinator and TG-DSC were employed for the characterization of the morphology, structure, chemical composition and thermal stability of the as-synthesized ZrC samples. The as-synthesized samples demonstrated high purity, low oxygen content and evenly distributed ZrC nano-powders with an average particle size of 50nm. In addition, the effects of endothermic rate and the possible chemical reaction mechanism were also discussed.展开更多
Thechangesof microstructure, phase? structureand microhardnessof Cr Al mixed powders in the processof mechanical? alloying ( MA) have? beeninvestigated by X ray diffractionanalysis , SEM examination and microstruct...Thechangesof microstructure, phase? structureand microhardnessof Cr Al mixed powders in the processof mechanical? alloying ( MA) have? beeninvestigated by X ray diffractionanalysis , SEM examination and microstructure testing. The results show that the mi crostructure of Cr Al mixed powderssubjected? to mechanicalalloying for96 hoursexhibits super saturated solid solution of Cr andintermetalliccompound η AlCr2 .展开更多
Using specially designed mechanochemical ball-mill equipment, ultramicro molybdenum carbide (MoC) powders were prepared by high-energy ball milling from pure molybdenum powders in civil coal gas atmosphere at room t...Using specially designed mechanochemical ball-mill equipment, ultramicro molybdenum carbide (MoC) powders were prepared by high-energy ball milling from pure molybdenum powders in civil coal gas atmosphere at room temperature. The structure and the particle size of the powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Transmission Electron micros-copy (TEM). The results showed that after milling for 30 h, the MoC powders of hexagonal structure were obtained, and their average parti-cle size was around 100 nm. It was found that chemisorption of CO in coal gas onto the fresh molybdenum surfaces created by milling was the predominant processes during the solid-gas reaction, and the energy input due to the introduction of highly dense grain boundaries and lattice defects provided the activation energy for the transition from Mo-C chemisorption to MoC. A coating was formed on the 40Cr steel base using plasma spray by mixing Ni60 alloy powders and ultramicro MoC powders of 5 wt.%, 10 wt.%, and 15 wt.%, respectively. Coat-ing abrasion tests under the condition of dry-grinding, 2 h wear time, and 300 N load showed that the wear resistance property of the coating added with ultramicro MoC powders could be improved greatly, and the wear resistance property of the coating increased with the increase of ultramicro MoC content. The wear mechanisms of ultramicro MoC coating is mainly plough wear and flaking wear assisted. In the abra-sion process, the evenly distributed ultramicro MoC particles play a dispersion strengthening and self-lubricating role in the coating.展开更多
文摘The influence of high energy ball milling on Al 30Si powder and ceramic particulate SiC was studied by means of SEM, XRD and DSC. The results show that Al 30Si powder and their microstructure are obviously refined after high energy ball milling process. The alloy powder and SiC p stick closely to each other without interfacial reaction. DSC results detect no reaction but relaxation of the samples. So high energy ball milling can be used as an effective method for ceramic particulate pre treatment in the fabrication of MMC.
文摘The variation of microstucture and phase structure of metal Cr and Al powders prepared by high energy mechanical milling was analyzed and investigated.The results show that with the continuous balling the average grain sizes of the brittle Cr powders are gradually decreased,and the diffraction peaks are widened and the peak values lower owing to the interrelation caused by both cold welding and breaking;the tough Al powders exhibit intense cold welding,and most of powders lead to adhesion to ball surface and pot wall,meanwhile,the Al powders subjected to intense deformation have led to many dislocation rings with non dislocation wind up found in the microstructure.
基金This work was supported by State Key Laboratory for Powder Metallurgy of China. We are grateful to the staff of Hu'nan Yin Zhou Nonferrous Metals Hi-Tech. Ltd. Company for cemented carbides powders.
文摘The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.
文摘Broadening and height reduction of X-ray diffraction peaks were observed after cold-pressing of unmilled Co-W powder mixture. It seems the effect of cold pressing has slightly reduced the lattice parameter of W from 3.165 to 3.143?. Consequent annealing of unmilled compacts yielded metastable phases. Upon 10 and 20 h ball milling of Co-W powder, no alloying was obtained. Although milling did not yield significant crystal changes in W and Co ground state structures, its effect is evident during subsequent annealing. An eta phase is obtained for the first time from unmilled-annealed Co-W powder mixture in the absence of interstitial elements like carbon, while the milled counterpart yielded the rhombohedral Co7W6-type phase with composition deviated from stoichiometric value.
基金financially supported by the National Natural Science Foundation of China (No. 51405467)the Research Fund for Scientific and Technological Projects of Chongqing (Nos. 2012ggB 40003 and cstc2013yykfC 00006)
文摘This study investigated the effects of carbon nanotube (CNT) concentration on the micro-morphologies and laser absorption proper- ties of CNT/AlSi10Mg composite powders produced by high-energy ball milling. A scanning electron microscope, X-ray diffractometer, laser particle size analyzer, high-temperature synchronous thermal analyzer, and UV/VIS/NIR spectrophotometer were used for the analysis of micro- graphs, phases, granulometric parameters, thermal properties, and laser absorption properties of the composite powders, respectively. The results showed that the powders gradually changed from flake- to granule-like morphology and the average particle size sharply decreased with in- creases in milling rotational speed and milling time. Moreover, a uniform dispersion of CNTs in AlSi10Mg powders was achieved only for a CNT content of 1.5wt%. Laser absorption values of the composite powders were also observed to gradually increase with the increase of CNT concentration, and different spectra displayed characteristic absorption peaks at a wavelength of approximately 826 nm.
基金Funded by the Program for New Century Excellent Talents in University(No.NCET-12-0655)the Guangxi Natural Science Foundation(No.2014GXNSFFA118004)the Self-determined and Innovative Research Funds of WUT(Nos.136643002 and No.2013IV058)
文摘High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretreatment process using traditional cheap zirconium dioxide powder (ZrO2), magnesium powder (Mg) and sucrose (C12H22Oll) as raw materials. FSEM, TEM, HRTEM, SAED, XRD, FTIR and Raman, ICP- AES, laser particle size analyzer, oxygen and nitrogen analyzer, carbon/sulfur determinator and TG-DSC were employed for the characterization of the morphology, structure, chemical composition and thermal stability of the as-synthesized ZrC samples. The as-synthesized samples demonstrated high purity, low oxygen content and evenly distributed ZrC nano-powders with an average particle size of 50nm. In addition, the effects of endothermic rate and the possible chemical reaction mechanism were also discussed.
文摘Thechangesof microstructure, phase? structureand microhardnessof Cr Al mixed powders in the processof mechanical? alloying ( MA) have? beeninvestigated by X ray diffractionanalysis , SEM examination and microstructure testing. The results show that the mi crostructure of Cr Al mixed powderssubjected? to mechanicalalloying for96 hoursexhibits super saturated solid solution of Cr andintermetalliccompound η AlCr2 .
文摘Using specially designed mechanochemical ball-mill equipment, ultramicro molybdenum carbide (MoC) powders were prepared by high-energy ball milling from pure molybdenum powders in civil coal gas atmosphere at room temperature. The structure and the particle size of the powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Transmission Electron micros-copy (TEM). The results showed that after milling for 30 h, the MoC powders of hexagonal structure were obtained, and their average parti-cle size was around 100 nm. It was found that chemisorption of CO in coal gas onto the fresh molybdenum surfaces created by milling was the predominant processes during the solid-gas reaction, and the energy input due to the introduction of highly dense grain boundaries and lattice defects provided the activation energy for the transition from Mo-C chemisorption to MoC. A coating was formed on the 40Cr steel base using plasma spray by mixing Ni60 alloy powders and ultramicro MoC powders of 5 wt.%, 10 wt.%, and 15 wt.%, respectively. Coat-ing abrasion tests under the condition of dry-grinding, 2 h wear time, and 300 N load showed that the wear resistance property of the coating added with ultramicro MoC powders could be improved greatly, and the wear resistance property of the coating increased with the increase of ultramicro MoC content. The wear mechanisms of ultramicro MoC coating is mainly plough wear and flaking wear assisted. In the abra-sion process, the evenly distributed ultramicro MoC particles play a dispersion strengthening and self-lubricating role in the coating.