The wideband electromagnetic characteristics of missile targets in midcourse are the foundation of midcourse attack-defense confrontation. This paper proposes a novel electromagnetic scattering modeling method for mid...The wideband electromagnetic characteristics of missile targets in midcourse are the foundation of midcourse attack-defense confrontation. This paper proposes a novel electromagnetic scattering modeling method for midcourse targets based on a pre- cise scattering center model, in which the nonideal scattering phenomenon, shielding effect and micro-motion are taken into consideration for the first time. Firstly, a precise scattering center model incorporating both the sliding scattering and artist- tropic scattering is established. Then the change rule of the target attitude is generalized, and a checking method of the scatter- ing center shielding effect is proposed for rotationally symmetric targets. Afterwards, a novel dynamic electromagnetic scat- tering model is presented, where the scattering center model updates along with the variation of the target attitude and can characterize the change of the electromagnetic characteristics of midcourse targets exactly. Finally, in light of the established model, the dynamic electromagnetic characteristics within different attitude angle bounds are analyzed by stages, and some useful conclusions are obtained. Experiment results from the measured data in anechoic chamber verify the validity of the proposed modeling method and relevant analysis.展开更多
The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolutio...The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolution and trajectory estimation is presented.The algorithm combines the focal plane CSO dynamics and radiation models,proposes a novel least square objective function from the space and time information,where CSO radiant intensity is excluded and initial dynamics(position and velocity) are chosen as the model parameters.Subsequently,the quantum-behaved particle swarm optimization(QPSO) is adopted to optimize the objective function to estimate model parameters,and then CSO focal plane trajectories and radiant intensities are computed.Meanwhile,the estimated CSO focal plane trajectories from multiple space-based infrared focal planes are associated and filtered to estimate the CSO stereo ballistic trajectories.Finally,the performance(CSO estimation precision of the focal plane coordinates,radiant intensities,and stereo ballistic trajectories,together with the computation load) of the algorithm is tested,and the results show that the algorithm is effective and feasible.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61025006)
文摘The wideband electromagnetic characteristics of missile targets in midcourse are the foundation of midcourse attack-defense confrontation. This paper proposes a novel electromagnetic scattering modeling method for midcourse targets based on a pre- cise scattering center model, in which the nonideal scattering phenomenon, shielding effect and micro-motion are taken into consideration for the first time. Firstly, a precise scattering center model incorporating both the sliding scattering and artist- tropic scattering is established. Then the change rule of the target attitude is generalized, and a checking method of the scatter- ing center shielding effect is proposed for rotationally symmetric targets. Afterwards, a novel dynamic electromagnetic scat- tering model is presented, where the scattering center model updates along with the variation of the target attitude and can characterize the change of the electromagnetic characteristics of midcourse targets exactly. Finally, in light of the established model, the dynamic electromagnetic characteristics within different attitude angle bounds are analyzed by stages, and some useful conclusions are obtained. Experiment results from the measured data in anechoic chamber verify the validity of the proposed modeling method and relevant analysis.
基金supported by China Postdoctoral Science Foundation(20080149320080430223)the Natural Science Foundation of An-hui Province (090412043)
文摘The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolution and trajectory estimation is presented.The algorithm combines the focal plane CSO dynamics and radiation models,proposes a novel least square objective function from the space and time information,where CSO radiant intensity is excluded and initial dynamics(position and velocity) are chosen as the model parameters.Subsequently,the quantum-behaved particle swarm optimization(QPSO) is adopted to optimize the objective function to estimate model parameters,and then CSO focal plane trajectories and radiant intensities are computed.Meanwhile,the estimated CSO focal plane trajectories from multiple space-based infrared focal planes are associated and filtered to estimate the CSO stereo ballistic trajectories.Finally,the performance(CSO estimation precision of the focal plane coordinates,radiant intensities,and stereo ballistic trajectories,together with the computation load) of the algorithm is tested,and the results show that the algorithm is effective and feasible.