This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 ...This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.展开更多
The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,w...The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,we measured the sinking velocity(SV) of Thalassiosira weissflogii using a new phytoplankton video observation instrument and analyzed major biochemical components under varying nutrient conditions.Our results showed that the SV of T.weissflogii under different nutrient limitation conditions varied substantially.The highest SV of(1.77±0.02) m/d was obtained under nitrate limitation,signific antly surpassing that under phosphate limitation at(0.98±0.13) m/d.As the nutrient limitation was released,the SV steadily decreased to(0.32±0.03) m/d and(0.15±0.05) m/d,respectively.Notably;under conditions with limited nitrate and phosphate concentrations,the SV values of T.weissflogii significantly positively correlated with the lipid content(P <0.001),with R^(2) values of 0.86 and 0.69,respectively.The change of the phytoplankton SV was primarily related to the intracellular compo sition,which is controlled by nutrient conditions but did not significantly correlate with transparent extracellular polymer and biosilica contents.The results of this study help to understand the regulation of the vertical sinking process of diatoms by nutrient restriction and provide new insights into phytoplankton dynamics and their relationship with the marine nutrient structure.展开更多
Based on analyzing the conservation of energy of penetrator with enhanced lateral efficiency (PELE) the penetrating against metal target, a theoretical expression predicting the residual velocity of PELE perforating...Based on analyzing the conservation of energy of penetrator with enhanced lateral efficiency (PELE) the penetrating against metal target, a theoretical expression predicting the residual velocity of PELE perforating the target is obtained. By modifying De Marre semi-experience formula,the ballistic limit velocities of PELE penetrating into 2024 aluminum alloy and 45# steel targets are also given. The theoretical predictions fit well with experimental or simulative results.展开更多
The sinking of phytoplankton is critical to organic matter transportation in the ocean and it is an essential process for the formation of coastal hypoxic zones.This study was based on a field investigation conducted ...The sinking of phytoplankton is critical to organic matter transportation in the ocean and it is an essential process for the formation of coastal hypoxic zones.This study was based on a field investigation conducted during the summer of 2022 in the Changjiang River(Yangtze River) Estuary(CJE) and its adjacent waters.The settling column method was employed to measure the sinking velocity(SV) of different size fractions of phytoplankton at the surface of the sea and to analyze their environmental control mechanisms.The findings reveal significant spatial variation in phytoplankton SV(-0.55-2.41 m/d) within the CJE.High-speed sinking was predominantly observed in phosphate-depleted regions beyond the CJE front.At the same time,an upward trend was more commonly observed in the phosphate-rich regions near the CJE mouth.The SV ranges for different sizefractionated phytoplankton,including micro-(>20 μm),nano-(2-20 μm),and picophytoplankton(0.7-2 μm),were-0.50-4.74 m/d,-1.04-1.59 m/d,and-1.24-1.65 m/d,respectively.Correlation analysis revealed a significant negative correlation between SV and dissolved inorganic phosphorus(DIP),implying that the influence of DIP contributes to SV.The variations in phytoplankton alkaline phosphatase activity suggested a significant increase in SV across all size fractions in the event of phosphorus limitation.Phytoplankton communities with limited photo synthetic capacity(maximum photochemical efficience,Fv/Fm <0.3) were found to have higher SV than that of communities with strong capacity,suggesting a link between sinking and alterations in physiological conditions due to phosphate depletion.The findings from the in situ phosphate enrichment experiments confirmed a marked decrease in SV following phosphate supplementation.These findings suggest that phosphorus limitation is the primary driver of elevated SV in the CJE.This study enhances the comprehension of the potential mechanisms underlying hypoxic zone formation in the CJE,providing novel insights into how nearshore eutrophication influences organic carbon migration.展开更多
In this paper, a new one-dimensional phenomenological model is developed for the assessment of the ballistic performance of Adobe. Adobe is a masonry largely spread in areas of the world involved in military operation...In this paper, a new one-dimensional phenomenological model is developed for the assessment of the ballistic performance of Adobe. Adobe is a masonry largely spread in areas of the world involved in military operations. Addressing fundamental ballistic parameters such as residual velocity or penetration depth for this building technology is necessary. The model follows the hypotheses for the ballistic response of concrete targets to high velocity impacts, provided with a dominant contribution of shear friction typical of soils. The hypotheses at the basis of the model are consistent with all experimental evidence collected by authors on Adobe. Adobe brick and mortar belong to the material class of concrete,whereas the overall mechanical parameters are determined by the internal soil mixture, including the percentage of fibre reinforcement. Despite its relative simplicity, the model is capable of well predicting ballistic test results currently available in literature for Adobe, including the data of an experimental campaign recently performed by the authors on real Adobe walls in the field.展开更多
After first reviewing historical and current difficulties in solving streamfunction and velocity potential in a limited domain,and describing recent developments in obtaining accurate solutions in a limited domain wit...After first reviewing historical and current difficulties in solving streamfunction and velocity potential in a limited domain,and describing recent developments in obtaining accurate solutions in a limited domain with arbitrary shape,a newly proposed approach is introduced and its application to a torrential rain event is reported.The results show that the newly developed method has advantages in capturing mesoscale information,compared with horizontal winds.展开更多
The stream function and the velocity potential can be easily computed by solving the Poisson equations in a unique way for the global domain. Because of the var- ious assumptions for handling the boundary conditions, ...The stream function and the velocity potential can be easily computed by solving the Poisson equations in a unique way for the global domain. Because of the var- ious assumptions for handling the boundary conditions, the solution is not unique when a limited domain is concerned. Therefore, it is very important to reduce or eliminate the effects caused by the uncertain boundary condition. In this paper, an iterative and ad- justing method based on the Endlich iteration method is presented to compute the stream function and the velocity potential in limited domains. This method does not need an explicitly specifying boundary condition when used to obtain the effective solution, and it is proved to be successful in decomposing and reconstructing the horizontal wind field with very small errors. The convergence of the method depends on the relative value for the distances of grids in two different directions and the value of the adjusting factor. It is shown that applying the method in Arakawa grids and irregular domains can obtain the accurate vorticity and divergence and accurately decompose and reconstruct the original wind field. Hence, the iterative and adjusting method is accurate and reliable.展开更多
The response of biological phantoms against high velocity impact is actively sought for applications in defense,space,soft robotics and sensing.Towards this end,we study the ballistic response of silicone based skin s...The response of biological phantoms against high velocity impact is actively sought for applications in defense,space,soft robotics and sensing.Towards this end,we study the ballistic response of silicone based skin simulant against fragment impact.Using a pneumatic gas gun setup,six chisel-nosed and three regular shaped(sphere,cylinder,and cube)fragments were impacted on the skin simulant.The resulting skin simulant response was studied in terms of ballistic limit velocities,energy densities,failure pattern,and the mechanics of interaction.The results indicate that the shape of the fragment affects the ballistic limit velocities.The ballistic limit velocities,energy densities of the chisel-nosed fragment simulating projectiles were relatively insensitive to the size(mass),except for the smallest(0.16 g)and largest(2.79 g)chisel-nosed fragment.For the same size(1 g),ballistic limit velocities and failure are dependent on the shape of the fragment.The skin simulant failed by combined plugging and elastic hole enlargement.Failure in the spherical fragment was dominated by the elastic hole enlargement,whereas plugging failure was dominant in all other fragments.The spherical,cylindrical,and chisel-nosed fragments created circular cavities,and the cubical fragment created a square cavity.In the case of the spherical fragment,slipping of the fragment within the skin simulant was seen.Cubical fragments created lateral cracks emanating from the corners of the square cavity.Interestingly,for all the fragments,the maximum deformation corresponding to the perforation was lower than the non-perforation indicating rate dependent,stress driven failure.The maximum deformation was also dependent on the shape of the fragment.Overall,these results provide unique insights into the mechanical response of a soft simulant against ballistic impact.Results have utility in the calibration and validation of computational models,design of personal protective equipment,and antipersonnel systems.展开更多
A methodology is developed based on the coupling of a finite element code with an optimisation module for the design of land vehicle armouring composed of lightweight aluminium alloy and high strength steel plate.Foll...A methodology is developed based on the coupling of a finite element code with an optimisation module for the design of land vehicle armouring composed of lightweight aluminium alloy and high strength steel plate.Following an experiment/simulation correlation,a numerical model has been built and calibrated considering monolithic plates and then verified considering a bi-metal protection against tungsten carbide projectile mimicking the core of a 7.62×51 AP8 ammunition.In addition,a method is proposed to obtain the v_(res)-v_(i) curve for the full 7.62×51 AP8 bullet from the v_(res)-v_(i) curve obtained from the core only.展开更多
In this paper, an extended car-following model is proposed based on an optimal velocity model (OVM), which takes the speed limit into consideration. The model is analyzed by using the linear stability theory and nonli...In this paper, an extended car-following model is proposed based on an optimal velocity model (OVM), which takes the speed limit into consideration. The model is analyzed by using the linear stability theory and nonlinear analysis method. The linear stability condition shows that the speed limit can enlarge the stable region of traffic flow. By applying the reductive perturbation method, the time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are derived to describe the traffic flow near the critical point. Furthermore, the relation between TDGL and mKdV equations is also given. It is clarified that the speed limit is essentially equivalent to the parameter adjusting of the driver’s sensitivity.展开更多
Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were de...Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were determined by a split Hopkinson pressure bar (SHPB) test system. Ti-55531 plates were subjected to two kinds of heat treatments, leading to the formation of high-strength and high-toughness plates. The results of SHPB test exhibit that the maximum impact absorbed energy of the high-strength plate at a strain rate of 2200 s^-1 is 270 MJ/m^3; however, the maximum value for the high-toughness plate at a strain rate of 4900 s^-1 is 710 MJ/m^3. The ballistic limit velocities for the high-strength and high-toughness plates with dimensions of 300 mm×300 mm×8 mm are 330 and 390 m/s, respectively. Excellent dynamic properties of Ti-55531 alloy correspond to good resistance to penetration. The microstructure evolution related to various impact velocities are observed to investigate the failure mechanism.展开更多
The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el...The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.展开更多
Ballistic experiments were conducted on thin steel plates that are normally impacted by hemisphericalnosed projectiles at velocities higher than their ballistic limits. The deformation and failure modes of the thin st...Ballistic experiments were conducted on thin steel plates that are normally impacted by hemisphericalnosed projectiles at velocities higher than their ballistic limits. The deformation and failure modes of the thin steel plates were analyzed. A new method was proposed according to the experimental results and the perforation phenomenon of the thin steel plates to determine the radius of the bulging region. In establishing this new method, a dynamic method combined with the plastic wave propagation concept based on the rigid plastic assumption was adopted. The whole perforation process was divided into four consecutive stages, namely, bulging deformation, dishing deformation, ductile hole enlargement, and projectile exit. On the basis of the energy conservation principle, a new model was developed to predict the residual velocities of hemispherical-nosed projectiles that perforate thin steel plates at low velocities.The results obtained from the theoretical calculations by the present model were compared with the experimental results. Theoretical predictions were in good agreement with the experimental results in terms of both the radius of the bulging region and the residual velocity of the projectile when the strain rate effects of the target material during each stage were considered.展开更多
In this study, a laminated woven bamboo/woven E glass/unsaturated polyester composite is developed to combat a ballistic impact from bullet under shooting test. The aim of this study is to understand the fundamental e...In this study, a laminated woven bamboo/woven E glass/unsaturated polyester composite is developed to combat a ballistic impact from bullet under shooting test. The aim of this study is to understand the fundamental effects of the woven bamboo arrangement towards increasing ballistic resistance properties. The work focusses on the ballistic limit test known as NIJ V50, which qualifies materials to be registered for use in combat armor panels. The results show that the composites withstood 482.5 m/s ± 5 limit of bullet velocity, satisfying the NIJ test at level II. The findings give a strong sound basis decision to engineers whether or not green composites are qualified to replace synthetic composites in certain engineering applications.展开更多
Whipple shield,a dual-wall system,as well as its improved structures,is widely applied to defend the hypervelocity impact of space debris(projectile).This paper reviews the studies about the mechanism and process of p...Whipple shield,a dual-wall system,as well as its improved structures,is widely applied to defend the hypervelocity impact of space debris(projectile).This paper reviews the studies about the mechanism and process of protection against hypervelocity impacts using Whipple shield.Ground-based experiment and numerical simulation for hypervelocity impact and protection are introduced briefly.Three steps of the Whipple shield protection are discussed in order,including the interaction between the projectile and bumper,the movement and diffusion of the debris cloud,and the interaction between the debris cloud and rear plate.Potential improvements of the protection performance focusing on these three steps are presented.Representative works in the last decade are mentioned specifically.Some prospects and suggestions for future studies are put forward.展开更多
The stability of slopes is always of great concern in the field of rock engineering. The geometry and orientation of pre-existing discontinuities show a larger impact on the behavior of slopes that is often used to de...The stability of slopes is always of great concern in the field of rock engineering. The geometry and orientation of pre-existing discontinuities show a larger impact on the behavior of slopes that is often used to describe the measurement of the steepness, incline, gradient, or grade of a straight line. One of the structurally controlled modes of failure in jointed rock slopes is plane failure. There are numerous analytical methods for the rock slope stability including limit equilibrium, stress analysis and stereographic methods. The limiting equilibrium methods for slopes under various conditions against plane failure have been previously proposed by several investigators. However, these methods do not involve water pressure on sliding surfaces assessments due to water velocity and have not yet been validated by case study results. This paper has tried to explore the effects of forces due to water pressure on discontinuity surfaces in plane failure through applying the improved equations. It has studied the effect of water flow velocity on sliding surfaces in safety factor, as well. New equations for considering water velocity (fluid dynamics) are presented. To check the validity of the suggested equations, safety factor for a case study has been determined. Results show that velocity of water flow had significant effect on the amount of safety factor. Also, the suggested equations have higher validity rate compared to the current equations.展开更多
This study is undertaken to explore the use of natural fiber Jute-epoxy(JE),Jute-epoxy-rubber(JRE)sandwich composite for ballistic energy absorption.Energy absorbed and residual velocities for these composites are eva...This study is undertaken to explore the use of natural fiber Jute-epoxy(JE),Jute-epoxy-rubber(JRE)sandwich composite for ballistic energy absorption.Energy absorbed and residual velocities for these composites are evaluated analytically and through Finite Element Analysis(FEA).FE analysis of JE plates is carried out for different thicknesses(3,5,10 and 15 mm).JE plates and JRE sandwiches having the same thickness(15 mm) are fabricated and tested to measure residual velocity and energy absorbed.The analytical results are found to agree well with the results of FE analysis with a maximum error of 9%.The study on JE composite plate reveals that thickness influences the energy absorption.Experimental and FE analysis study showed that JRE sandwiches have better energy absorption than JE plates.Energy absorption of a JRE sandwich is about 71% greater than JE plates.Damages obtained from FEA and testing are in good agreement,SEM analysis confirms composites failed by fiber rupture and fragmentation.展开更多
7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 hea...7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.展开更多
The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic ...The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic high velocity fragments were studied. According to the ballistic experimental results and theoretical analysis, the linear relation between ballistic limit vBL and area density AD was confirmed. The relative parameters of showing experientially residual velocity vr were expressed by the function of AD. In the end, versatile experiential expression between vr and AD was found. Prediction of vr and vBL using obtained expressions under the above stated condition of impacting URP was consistent with the experimentaled results. Consequently, the two experiential relations can be used to predict the residual velocity and ballistic limit of cubic high velocity fragments impacting URP. The residual characteristic of high-velocity steel fragments penetrating UHMWPE FRP laminates can be more exactly forecasted by the two derived experiential formulas.展开更多
A small cubic closed vessel with schlieren measurement technique combined with high-speed video camera were used to study limit flame properties under microgravity conditions at atmospheric pressure and room temperatu...A small cubic closed vessel with schlieren measurement technique combined with high-speed video camera were used to study limit flame properties under microgravity conditions at atmospheric pressure and room temperature.The rich flammability limit of C3H8/air was determined to be 9.2% C3H8.Stretched flame propagation speeds,stretched laminar burning velocities and unstretched laminar burning velocities near rich C3H8/air flammability limits were measured at different equivalence ratios.Outwardly propagating spherical flames were used to study the sensitivities of the flame propagation speeds and laminar burning velocities to flame stretch using Markstein lengths.Unstretched laminar burning velocity at rich flammability limit was determined to be 1.09cm/s.Lewis numbers were less than unity in rich C3H8/air and negative Markstein lengths were concluded.Absolute values of Markstein lengths were found to decrease linearly with equivalence ratios increase.展开更多
文摘This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.
基金The Key R&D Program of Zhejiang under contract No.2023C03120the Science Foundation of Donghai Laboratory under contract No.DH-2022KF0215+2 种基金the National Key Research and Development Program of China under contract No.2021YFC3101702the National Programme on Global Change and Air-Sea Interaction (PhaseⅡ)—Hypoxia and Acidification Monitoring Warning Project in the Changjiang EstuaryLong-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE) Project under contract No.SZ2001。
文摘The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,we measured the sinking velocity(SV) of Thalassiosira weissflogii using a new phytoplankton video observation instrument and analyzed major biochemical components under varying nutrient conditions.Our results showed that the SV of T.weissflogii under different nutrient limitation conditions varied substantially.The highest SV of(1.77±0.02) m/d was obtained under nitrate limitation,signific antly surpassing that under phosphate limitation at(0.98±0.13) m/d.As the nutrient limitation was released,the SV steadily decreased to(0.32±0.03) m/d and(0.15±0.05) m/d,respectively.Notably;under conditions with limited nitrate and phosphate concentrations,the SV values of T.weissflogii significantly positively correlated with the lipid content(P <0.001),with R^(2) values of 0.86 and 0.69,respectively.The change of the phytoplankton SV was primarily related to the intracellular compo sition,which is controlled by nutrient conditions but did not significantly correlate with transparent extracellular polymer and biosilica contents.The results of this study help to understand the regulation of the vertical sinking process of diatoms by nutrient restriction and provide new insights into phytoplankton dynamics and their relationship with the marine nutrient structure.
文摘Based on analyzing the conservation of energy of penetrator with enhanced lateral efficiency (PELE) the penetrating against metal target, a theoretical expression predicting the residual velocity of PELE perforating the target is obtained. By modifying De Marre semi-experience formula,the ballistic limit velocities of PELE penetrating into 2024 aluminum alloy and 45# steel targets are also given. The theoretical predictions fit well with experimental or simulative results.
基金The National Programme on Global Change and Air-Sea Interaction (PhaseⅡ)—Hypoxia and Acidification Monitoring and Warning Project in the CE under contract No.GASI-01-CJKthe Science Foundation of Donghai Laboratory under contract No.DH-2022KF0215+3 种基金the Oceanic Interdisciplinary Program of Shanghai Jiao Tong UniversityScientific Research Fund of the Second Institute of Oceanography,MNR under contract No.SL2022ZD207the National Key R&D Program of China under contract No.2021YFC3101702the Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE)Project under contract No.SZ2001。
文摘The sinking of phytoplankton is critical to organic matter transportation in the ocean and it is an essential process for the formation of coastal hypoxic zones.This study was based on a field investigation conducted during the summer of 2022 in the Changjiang River(Yangtze River) Estuary(CJE) and its adjacent waters.The settling column method was employed to measure the sinking velocity(SV) of different size fractions of phytoplankton at the surface of the sea and to analyze their environmental control mechanisms.The findings reveal significant spatial variation in phytoplankton SV(-0.55-2.41 m/d) within the CJE.High-speed sinking was predominantly observed in phosphate-depleted regions beyond the CJE front.At the same time,an upward trend was more commonly observed in the phosphate-rich regions near the CJE mouth.The SV ranges for different sizefractionated phytoplankton,including micro-(>20 μm),nano-(2-20 μm),and picophytoplankton(0.7-2 μm),were-0.50-4.74 m/d,-1.04-1.59 m/d,and-1.24-1.65 m/d,respectively.Correlation analysis revealed a significant negative correlation between SV and dissolved inorganic phosphorus(DIP),implying that the influence of DIP contributes to SV.The variations in phytoplankton alkaline phosphatase activity suggested a significant increase in SV across all size fractions in the event of phosphorus limitation.Phytoplankton communities with limited photo synthetic capacity(maximum photochemical efficience,Fv/Fm <0.3) were found to have higher SV than that of communities with strong capacity,suggesting a link between sinking and alterations in physiological conditions due to phosphate depletion.The findings from the in situ phosphate enrichment experiments confirmed a marked decrease in SV following phosphate supplementation.These findings suggest that phosphorus limitation is the primary driver of elevated SV in the CJE.This study enhances the comprehension of the potential mechanisms underlying hypoxic zone formation in the CJE,providing novel insights into how nearshore eutrophication influences organic carbon migration.
文摘In this paper, a new one-dimensional phenomenological model is developed for the assessment of the ballistic performance of Adobe. Adobe is a masonry largely spread in areas of the world involved in military operations. Addressing fundamental ballistic parameters such as residual velocity or penetration depth for this building technology is necessary. The model follows the hypotheses for the ballistic response of concrete targets to high velocity impacts, provided with a dominant contribution of shear friction typical of soils. The hypotheses at the basis of the model are consistent with all experimental evidence collected by authors on Adobe. Adobe brick and mortar belong to the material class of concrete,whereas the overall mechanical parameters are determined by the internal soil mixture, including the percentage of fibre reinforcement. Despite its relative simplicity, the model is capable of well predicting ballistic test results currently available in literature for Adobe, including the data of an experimental campaign recently performed by the authors on real Adobe walls in the field.
基金supported by the National Basic Research Program of China(Grant No.2012CB417201)the National Science and Technology Support Program(Grant No.GYHY201406001)+1 种基金the National Natural Science Foundation of China(Grant No.41205033)the Key Project of the Key Laboratory of Atmosphere and Environments on the Plateau in Sichuan Province(Grant No.PAEKL-2014-C1)
文摘After first reviewing historical and current difficulties in solving streamfunction and velocity potential in a limited domain,and describing recent developments in obtaining accurate solutions in a limited domain with arbitrary shape,a newly proposed approach is introduced and its application to a torrential rain event is reported.The results show that the newly developed method has advantages in capturing mesoscale information,compared with horizontal winds.
基金Project supported by the National Natural Science Foundation of China (No.40975031)
文摘The stream function and the velocity potential can be easily computed by solving the Poisson equations in a unique way for the global domain. Because of the var- ious assumptions for handling the boundary conditions, the solution is not unique when a limited domain is concerned. Therefore, it is very important to reduce or eliminate the effects caused by the uncertain boundary condition. In this paper, an iterative and ad- justing method based on the Endlich iteration method is presented to compute the stream function and the velocity potential in limited domains. This method does not need an explicitly specifying boundary condition when used to obtain the effective solution, and it is proved to be successful in decomposing and reconstructing the horizontal wind field with very small errors. The convergence of the method depends on the relative value for the distances of grids in two different directions and the value of the adjusting factor. It is shown that applying the method in Arakawa grids and irregular domains can obtain the accurate vorticity and divergence and accurately decompose and reconstruct the original wind field. Hence, the iterative and adjusting method is accurate and reliable.
文摘The response of biological phantoms against high velocity impact is actively sought for applications in defense,space,soft robotics and sensing.Towards this end,we study the ballistic response of silicone based skin simulant against fragment impact.Using a pneumatic gas gun setup,six chisel-nosed and three regular shaped(sphere,cylinder,and cube)fragments were impacted on the skin simulant.The resulting skin simulant response was studied in terms of ballistic limit velocities,energy densities,failure pattern,and the mechanics of interaction.The results indicate that the shape of the fragment affects the ballistic limit velocities.The ballistic limit velocities,energy densities of the chisel-nosed fragment simulating projectiles were relatively insensitive to the size(mass),except for the smallest(0.16 g)and largest(2.79 g)chisel-nosed fragment.For the same size(1 g),ballistic limit velocities and failure are dependent on the shape of the fragment.The skin simulant failed by combined plugging and elastic hole enlargement.Failure in the spherical fragment was dominated by the elastic hole enlargement,whereas plugging failure was dominant in all other fragments.The spherical,cylindrical,and chisel-nosed fragments created circular cavities,and the cubical fragment created a square cavity.In the case of the spherical fragment,slipping of the fragment within the skin simulant was seen.Cubical fragments created lateral cracks emanating from the corners of the square cavity.Interestingly,for all the fragments,the maximum deformation corresponding to the perforation was lower than the non-perforation indicating rate dependent,stress driven failure.The maximum deformation was also dependent on the shape of the fragment.Overall,these results provide unique insights into the mechanical response of a soft simulant against ballistic impact.Results have utility in the calibration and validation of computational models,design of personal protective equipment,and antipersonnel systems.
基金partly supported by the French Association Nationale de la Recherche et de la Technologie,ANRT (Grant No.2018/0299)。
文摘A methodology is developed based on the coupling of a finite element code with an optimisation module for the design of land vehicle armouring composed of lightweight aluminium alloy and high strength steel plate.Following an experiment/simulation correlation,a numerical model has been built and calibrated considering monolithic plates and then verified considering a bi-metal protection against tungsten carbide projectile mimicking the core of a 7.62×51 AP8 ammunition.In addition,a method is proposed to obtain the v_(res)-v_(i) curve for the full 7.62×51 AP8 bullet from the v_(res)-v_(i) curve obtained from the core only.
文摘In this paper, an extended car-following model is proposed based on an optimal velocity model (OVM), which takes the speed limit into consideration. The model is analyzed by using the linear stability theory and nonlinear analysis method. The linear stability condition shows that the speed limit can enlarge the stable region of traffic flow. By applying the reductive perturbation method, the time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are derived to describe the traffic flow near the critical point. Furthermore, the relation between TDGL and mKdV equations is also given. It is clarified that the speed limit is essentially equivalent to the parameter adjusting of the driver’s sensitivity.
基金Project(2012 DFG51540)supported by the Ministry of Science and Technology of China
文摘Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were determined by a split Hopkinson pressure bar (SHPB) test system. Ti-55531 plates were subjected to two kinds of heat treatments, leading to the formation of high-strength and high-toughness plates. The results of SHPB test exhibit that the maximum impact absorbed energy of the high-strength plate at a strain rate of 2200 s^-1 is 270 MJ/m^3; however, the maximum value for the high-toughness plate at a strain rate of 4900 s^-1 is 710 MJ/m^3. The ballistic limit velocities for the high-strength and high-toughness plates with dimensions of 300 mm×300 mm×8 mm are 330 and 390 m/s, respectively. Excellent dynamic properties of Ti-55531 alloy correspond to good resistance to penetration. The microstructure evolution related to various impact velocities are observed to investigate the failure mechanism.
文摘The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.
基金financially supported by the National Security Major Foundation Research Project(973)of China(6133050102)the National Natural Science Foundation of China(Grant No.51409253)
文摘Ballistic experiments were conducted on thin steel plates that are normally impacted by hemisphericalnosed projectiles at velocities higher than their ballistic limits. The deformation and failure modes of the thin steel plates were analyzed. A new method was proposed according to the experimental results and the perforation phenomenon of the thin steel plates to determine the radius of the bulging region. In establishing this new method, a dynamic method combined with the plastic wave propagation concept based on the rigid plastic assumption was adopted. The whole perforation process was divided into four consecutive stages, namely, bulging deformation, dishing deformation, ductile hole enlargement, and projectile exit. On the basis of the energy conservation principle, a new model was developed to predict the residual velocities of hemispherical-nosed projectiles that perforate thin steel plates at low velocities.The results obtained from the theoretical calculations by the present model were compared with the experimental results. Theoretical predictions were in good agreement with the experimental results in terms of both the radius of the bulging region and the residual velocity of the projectile when the strain rate effects of the target material during each stage were considered.
基金the Fundamental Research Grant Scheme(FRGS)1/2013/TK01/UPNM/01/2Universiti Pertahanan National Malaysia(UPNM)for supporting the research work
文摘In this study, a laminated woven bamboo/woven E glass/unsaturated polyester composite is developed to combat a ballistic impact from bullet under shooting test. The aim of this study is to understand the fundamental effects of the woven bamboo arrangement towards increasing ballistic resistance properties. The work focusses on the ballistic limit test known as NIJ V50, which qualifies materials to be registered for use in combat armor panels. The results show that the composites withstood 482.5 m/s ± 5 limit of bullet velocity, satisfying the NIJ test at level II. The findings give a strong sound basis decision to engineers whether or not green composites are qualified to replace synthetic composites in certain engineering applications.
基金This work is supported by the National Natural Science Foundation of China(11627901,11872118).
文摘Whipple shield,a dual-wall system,as well as its improved structures,is widely applied to defend the hypervelocity impact of space debris(projectile).This paper reviews the studies about the mechanism and process of protection against hypervelocity impacts using Whipple shield.Ground-based experiment and numerical simulation for hypervelocity impact and protection are introduced briefly.Three steps of the Whipple shield protection are discussed in order,including the interaction between the projectile and bumper,the movement and diffusion of the debris cloud,and the interaction between the debris cloud and rear plate.Potential improvements of the protection performance focusing on these three steps are presented.Representative works in the last decade are mentioned specifically.Some prospects and suggestions for future studies are put forward.
文摘The stability of slopes is always of great concern in the field of rock engineering. The geometry and orientation of pre-existing discontinuities show a larger impact on the behavior of slopes that is often used to describe the measurement of the steepness, incline, gradient, or grade of a straight line. One of the structurally controlled modes of failure in jointed rock slopes is plane failure. There are numerous analytical methods for the rock slope stability including limit equilibrium, stress analysis and stereographic methods. The limiting equilibrium methods for slopes under various conditions against plane failure have been previously proposed by several investigators. However, these methods do not involve water pressure on sliding surfaces assessments due to water velocity and have not yet been validated by case study results. This paper has tried to explore the effects of forces due to water pressure on discontinuity surfaces in plane failure through applying the improved equations. It has studied the effect of water flow velocity on sliding surfaces in safety factor, as well. New equations for considering water velocity (fluid dynamics) are presented. To check the validity of the suggested equations, safety factor for a case study has been determined. Results show that velocity of water flow had significant effect on the amount of safety factor. Also, the suggested equations have higher validity rate compared to the current equations.
文摘This study is undertaken to explore the use of natural fiber Jute-epoxy(JE),Jute-epoxy-rubber(JRE)sandwich composite for ballistic energy absorption.Energy absorbed and residual velocities for these composites are evaluated analytically and through Finite Element Analysis(FEA).FE analysis of JE plates is carried out for different thicknesses(3,5,10 and 15 mm).JE plates and JRE sandwiches having the same thickness(15 mm) are fabricated and tested to measure residual velocity and energy absorbed.The analytical results are found to agree well with the results of FE analysis with a maximum error of 9%.The study on JE composite plate reveals that thickness influences the energy absorption.Experimental and FE analysis study showed that JRE sandwiches have better energy absorption than JE plates.Energy absorption of a JRE sandwich is about 71% greater than JE plates.Damages obtained from FEA and testing are in good agreement,SEM analysis confirms composites failed by fiber rupture and fragmentation.
文摘7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.
基金Sponsored by the 11th Five Years Foundation for Military Advance Research (40103050103)
文摘The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic high velocity fragments were studied. According to the ballistic experimental results and theoretical analysis, the linear relation between ballistic limit vBL and area density AD was confirmed. The relative parameters of showing experientially residual velocity vr were expressed by the function of AD. In the end, versatile experiential expression between vr and AD was found. Prediction of vr and vBL using obtained expressions under the above stated condition of impacting URP was consistent with the experimentaled results. Consequently, the two experiential relations can be used to predict the residual velocity and ballistic limit of cubic high velocity fragments impacting URP. The residual characteristic of high-velocity steel fragments penetrating UHMWPE FRP laminates can be more exactly forecasted by the two derived experiential formulas.
基金Supported by the Research Foundation of Beijing Institute of Technology(20070242004)
文摘A small cubic closed vessel with schlieren measurement technique combined with high-speed video camera were used to study limit flame properties under microgravity conditions at atmospheric pressure and room temperature.The rich flammability limit of C3H8/air was determined to be 9.2% C3H8.Stretched flame propagation speeds,stretched laminar burning velocities and unstretched laminar burning velocities near rich C3H8/air flammability limits were measured at different equivalence ratios.Outwardly propagating spherical flames were used to study the sensitivities of the flame propagation speeds and laminar burning velocities to flame stretch using Markstein lengths.Unstretched laminar burning velocity at rich flammability limit was determined to be 1.09cm/s.Lewis numbers were less than unity in rich C3H8/air and negative Markstein lengths were concluded.Absolute values of Markstein lengths were found to decrease linearly with equivalence ratios increase.