To explore fertilization methods for wine bamboo cultivation in southwestern semi-arid areas of China, this study analyzed annual changes in sap yield and nutrient composition from May 2013 to March 2015 by using bamb...To explore fertilization methods for wine bamboo cultivation in southwestern semi-arid areas of China, this study analyzed annual changes in sap yield and nutrient composition from May 2013 to March 2015 by using bamboo charcoal-based bio-fertilizer (ZT) and organic fertilizer treatments (CK). The study also provided basic data for functional beverage preparation and for application of ZT. The results of the two experimental cycles revealed that under the ZT treatment, sap was available for collection from May, the beginning of the rainy season, to November, the beginning of the dry season. The period of abundance was July to October with the highest yield of sap of 3.18 L stalk-1 in September, 2014, still lower than the moso bamboo sap, which was likely due to the scale of sap production of monopodial bamboos being different from that of sympodial bamboos. In January, trace amounts of sap were still detected, suggesting that the effect of the treatment was significant. Moreover,in the dry season, soil water content and soil temperatures at 10-15 cm depths indicated that the fertilizer had the ability to maintain soil temperatures and moisture. In both fertilizer treatments, the correlation between the collected sap and environmental parameters was significant. In the ZT treatment for the entire 2 years, the effectual environ- mental factors were soil water at 10-15 cm, air tempera- tures, and wind speeds. The same determining factors were observed for the rainy season. In the CK treatments, the effectual environmental factors for the entire year and the rainy season were soil water at 0-5 cm and air moisture. The bamboo charcoal-based bio-fertilizer elevated the potassium, calcium, iron, manganese, copper, and total phosphorus content, simultaneously increasing the sap yield, protein and reducing sugar contents, and with a relative increase in sap pH. The wine bamboo sap con- tained 18 amino acids. Glutamic acid, alanine and proline were the most abundant. Compared to the controls, the treatment showed higher levels of all amino acids. Thus, the ZT treatment could be more beneficial to the development of root systems because the function of heat preservation and moisture retention prolong the sap collection period, increase sap yields, and elevate mineral element, conventional nutrients, and amino acid contents with evident fertilization effects and broader application prospects.展开更多
The objective of this work was to study the properties of bamboo charcoal and cement-based composite materials and their microstructure. The pastes with various bamboo charcoals were prepared and the relative properti...The objective of this work was to study the properties of bamboo charcoal and cement-based composite materials and their microstructure. The pastes with various bamboo charcoals were prepared and the relative properties such as setting times and strength were tested and the microstructures and pore characteristics of pastes with various bamboos were also studied. The experimental results indicated that bamboo charcoal affects the setting times of cement paste, but the introduction of water reducer relieves this condition. Bamboo charcoal also poses an impact on the hardened paste strength. The prominent strength decrease is found when more and larger size bamboo charcoal is mixed into the cement paste. Bamboo charcoal alters the paste microstructure and increases the porosity and pore volume, but it increases the pores with the diameter of less than 50 μm. The pastes with various bamboo charcoals are given with the good functions such as adjusting humidity and adsorption.展开更多
基金supported by Zhejiang Provincial Natural Science Foundation of China(LY14C030008)Forestry Industry Standard Project of China(2015LY-080)
文摘To explore fertilization methods for wine bamboo cultivation in southwestern semi-arid areas of China, this study analyzed annual changes in sap yield and nutrient composition from May 2013 to March 2015 by using bamboo charcoal-based bio-fertilizer (ZT) and organic fertilizer treatments (CK). The study also provided basic data for functional beverage preparation and for application of ZT. The results of the two experimental cycles revealed that under the ZT treatment, sap was available for collection from May, the beginning of the rainy season, to November, the beginning of the dry season. The period of abundance was July to October with the highest yield of sap of 3.18 L stalk-1 in September, 2014, still lower than the moso bamboo sap, which was likely due to the scale of sap production of monopodial bamboos being different from that of sympodial bamboos. In January, trace amounts of sap were still detected, suggesting that the effect of the treatment was significant. Moreover,in the dry season, soil water content and soil temperatures at 10-15 cm depths indicated that the fertilizer had the ability to maintain soil temperatures and moisture. In both fertilizer treatments, the correlation between the collected sap and environmental parameters was significant. In the ZT treatment for the entire 2 years, the effectual environ- mental factors were soil water at 10-15 cm, air tempera- tures, and wind speeds. The same determining factors were observed for the rainy season. In the CK treatments, the effectual environmental factors for the entire year and the rainy season were soil water at 0-5 cm and air moisture. The bamboo charcoal-based bio-fertilizer elevated the potassium, calcium, iron, manganese, copper, and total phosphorus content, simultaneously increasing the sap yield, protein and reducing sugar contents, and with a relative increase in sap pH. The wine bamboo sap con- tained 18 amino acids. Glutamic acid, alanine and proline were the most abundant. Compared to the controls, the treatment showed higher levels of all amino acids. Thus, the ZT treatment could be more beneficial to the development of root systems because the function of heat preservation and moisture retention prolong the sap collection period, increase sap yields, and elevate mineral element, conventional nutrients, and amino acid contents with evident fertilization effects and broader application prospects.
基金Funded by the National Natural Science Foundation of China(Nos.51678442,51578412,51478348,and 51508404)the National High-speed Train Union Fund(U1534207)+1 种基金the Key Project of the Shanghai Committee of Science and Technology(No.15DZ1205003)the Fundamental Research Funds for the Central Universities
文摘The objective of this work was to study the properties of bamboo charcoal and cement-based composite materials and their microstructure. The pastes with various bamboo charcoals were prepared and the relative properties such as setting times and strength were tested and the microstructures and pore characteristics of pastes with various bamboos were also studied. The experimental results indicated that bamboo charcoal affects the setting times of cement paste, but the introduction of water reducer relieves this condition. Bamboo charcoal also poses an impact on the hardened paste strength. The prominent strength decrease is found when more and larger size bamboo charcoal is mixed into the cement paste. Bamboo charcoal alters the paste microstructure and increases the porosity and pore volume, but it increases the pores with the diameter of less than 50 μm. The pastes with various bamboo charcoals are given with the good functions such as adjusting humidity and adsorption.