Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose an...Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose and lignin.To dissect the roles of hemicellulosic polysaccharides during fiber development,four IRREGULAR XYLEM 15(IRX15)genes,GhIRX15-1/-2/-3/-4,were functionally characterized in cotton.These genes encode DUF579 domain-containing proteins,which are homologs of AtIRX15 involved in xylan biosynthesis.The four GhIRX15 genes were predominantly expressed during fiber secondary wall thickening,and the encoded proteins were localized to the Golgi apparatus.Each GhIRX15 gene could restore the xylan deficient phenotype in the Arabidopsis irx15irx15l double mutant.Silencing of GhIRX15s in cotton resulted in shorter mature fibers with a thinner cell wall and reduced cellulose content as compared to the wild type.Intriguingly,GhIRX15-2 and GhIRX15-4 formed homodimers and heterodimers.In addition,the GhIRX15s showed physical interaction with glycosyltransferases GhGT43C,GhGT47A and GhGT47B,which are responsible for synthesis of the xylan backbone and reducing end sequence.Moreover,the GhIRX15s can form heterocomplexes with enzymes involved in xylan modification and side chain synthesis,such as GhGUX1/2,GhGXM1/2 and GhTBL1.These findings suggest that GhIRX15s participate in fiber xylan biosynthesis and modulate fiber development via forming large multiprotein complexes.展开更多
Cotton fiber is one of the main raw materials for the textile industry.In recent years,many cotton fiber quality QTL have been identified,but few were applied in breeding.In this study,a genome wide association study(...Cotton fiber is one of the main raw materials for the textile industry.In recent years,many cotton fiber quality QTL have been identified,but few were applied in breeding.In this study,a genome wide association study(GWAS)of fiber-quality traits in 265 upland cotton breeding intermediate lines(GhBreeding),combined with genome-wide selective sweep analysis(GSSA)and genomic selection(GS),revealed 25 QTL.Most of these QTL were ignored by only using GWAS.The CRISPR/Cas9 mutants of GhMYB_D13 had shorter fiber,which indicates the credibility of QTL to a certain extent.Then these QTL were verified in other cotton natural populations,5 stable QTL were found having broad potential for application in breeding.Additionally,among these 5 stable QTL,superior genotypes of 4 showed an enrichment in most improved new varieties widely cultivated currently.These findings provide insights for how to identify more QTL through combined multiple genomic analysis to apply in breeding.展开更多
This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used s...This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing.展开更多
Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes ...Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.展开更多
Calcium(Ca^(2+))plays an important role in determining plant growth and development because it maintains cell wall and membrane integrity.Therefore,understanding the role of Ca^(2+)in carbon and lipid metabolism could...Calcium(Ca^(2+))plays an important role in determining plant growth and development because it maintains cell wall and membrane integrity.Therefore,understanding the role of Ca^(2+)in carbon and lipid metabolism could provide insights into the dynamic changes in cell membranes and cell walls during the rapid elongation of cotton fibers.In the present study,we found that the lack of Ca^(2+)promoted fiber elongation and rapid ovule expansion,but it also caused tissue browning in the ovule culture system.RNA-sequencing revealed that Ca^(2+)deficiency induced cells to be highly oxidized,and the expression of genes related to carbon metabolism and lipid metabolism was activated significantly.All gene members of nine key enzymes involved in glycolysis were up-regulated,and glucose was significantly reduced in Ca^(2+)deficiency-treated tissues.Ca^(2+)deficiency adjusted the flowing of glycolysis metabolic.However,low K^(+)recovered the expression levels of glycolysis genes and glucose content caused by Ca^(2+)deficiency.Electrospray ionizationtandem mass spectrometry technology was applied to uncover the dynamic profile of lipidome under Ca^(2+)and K^(+)interacted conditions.Ca^(2+)deficiency led to the decrease of fatty acid(FA),diacylglycerol(DAG),glycolipid and the significant increase of triacylglycerol(TAG),phospholipid phosphatidylethanolamine(PE),phosphatidylglycerol(PG),and PC(phosphatidylcholine).Low K^(+)restored the contents of FA,phospholipids,and glycolipids,effectively relieved the symptoms caused by Ca^(2+)deficiency,and recovered the development of fiber cells.This study revealed dynamic changes in transcript and metabolic levels and uncovered the signaling interaction of Ca^(2+)deficiency and low K^(+)in glycolysis and lipid metabolism during fiber development.展开更多
In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtur...In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.展开更多
Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate lig...Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate light harvesting,and scavenge reactive oxygen species.Although carotenoids accumulate predominantly in rapidly elongating cotton fibers,their roles in cotton fiber development remain poorly understood.In this study,a fiber-specific promoter proSCFP was applied to drive the expression of GhOR1Del,a positive regulator of carotenoid accumulation,to upregulate the carotenoid level in cotton fiber in planta.Fiber length,strength,and fineness were increased in proSCFP:GhOR1Del transgenic cotton and abscisic acid(ABA)and ethylene contents were increased in elongating fibers.The ABA downstream regulator GhbZIP27a stimulated the expression of the ethylene synthase gene GhACO3 by binding to its promoter,suggesting that ABA promoted fiber elongation by increasing ethylene production.These findings suggest the involvement of carotenoids and ABA signaling in promoting cotton fiber elongation and provide a strategy for improving cotton fiber quality.展开更多
IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transiti...IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transition period of cotton fiber development,and GhIQD10-overexpression lines showed shorter fibers.GhIQD10 interacted with GhCaM7 and the interaction was inhibited by Ca^(2+).In in vitro ovule culture,Ca^(2+)rescued the shorter-fiber phenotype of GhIQD10-overexpression lines,which were insensitive to the Ca^(2+)channel inhibitor verapamil and the Ca^(2+)pool release channel blocker 2-aminoethoxydiphenyl borate.We conclude that GhIQD10 affects cotton fiber elongation via Ca^(2+)signaling by interacting with GhCaM7.Brassinosteroid(BR)biosynthesis and signaling genes were up-regulated in GhIQD10-overexpression lines.Fiber development in these lines was not affected by epibrassinolide or the BR biosynthesis inhibitor brassinozole,indicating that the influence of GhIQD10 on fiber elongation was not associated with BR.展开更多
Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laborat...Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment.展开更多
Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell w...Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell wall synthesis stages, we compared the respective transcriptomes and metabolite profiles. Comparative analysis of transcriptomes by cDNA array identified 633 genes that were differentially regulated during fiber development. Principal component analysis (PCA) using expressed genes as variables divided fiber samples into four groups, which are diagnostic of developmental stages. Similar grouping results are also found if we use non-polar or polar metabolites as variables for PCA of developing fibers. Auxin signaling, wall-loosening and lipid metabolism are highly active during fiber elongation, whereas cellulose biosynthesis is predominant and many other metabolic pathways are downregulated at the secondary cell wall synthesis stage. Transcript and metabolite profiles and enzyme activities are consistent in demonstrating a specialization process of cotton fiber development toward cellulose synthesis. These data demonstrate that cotton fiber cell at a certain stage has its own unique feature, and developmental stages of cotton fiber cells can be distinguished by their transcript and metabolite profiles. During the secondary cell wall synthesis stage, metabolic pathways are streamed into cellulose synthesis.展开更多
Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement.Due to its renewable short natural growth cycle and abundance of bamboo resources,bamboo fiber has attracte...Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement.Due to its renewable short natural growth cycle and abundance of bamboo resources,bamboo fiber has attracted attention over other natural fibers.Bamboo fiber has a complex natural structure but offers excellent mechanical properties,which are utilized in the textile,papermaking,construction,and composites industry.However,bam-boo fibers can easily absorb moisture and are prone to corrosion limiting their use in engineering applications.Therefore,a better understanding of bamboo fiber is particularly important.This paper reviews all existing research on the mechanical characterization of bamboo fiber with an emphasis on the extraction and treatment techniques,and their effect on relevant properties.The chemical composition of bamboo fibers has also been thoroughly investigated and presented herein.Current applications and future opportunities for bamboo fibers in various fields have been presented with a focus on research needs.This work can serve as a reference for future research on bamboo fiber.展开更多
Temperature is one of the key factors that influence cotton fiber synthesis at the late growth stage of cotton. In this paper, using two early-maturing cotton varieties as experimental materials, night temperature inc...Temperature is one of the key factors that influence cotton fiber synthesis at the late growth stage of cotton. In this paper, using two early-maturing cotton varieties as experimental materials, night temperature increase was stimulated in the field using far-infrared quartz tubes set in semi-mobile incubators and compared with the normal night temperatures (control) in order to investigate the effects of night temperature on the cotton fiber cellulose synthesis during secondary wall thickening. The results showed that the activity of sucrose synthase (SuSy) and sucrose phosphate synthase (SPS) quickly increased and remained constant during the development of cotton fiber, while the activity of acid invertase (AI) and alkaline invertase (NI) decreased, increased night temperatures prompted the rapid transformation of sugar, and all the available sucrose fully converted into cellulose. With night temperature increasing treatment, an increase in SuSy activity and concentration of sucrose indicate more sucrose converted into UDPG (uridin diphosphate-glucose) during the early and late stages of cotton fiber development. Furthermore, SPS activity and the increased concentration of fructose accelerated fructose degradation and reduced the inhibition of fructose to SuSy; maintaining higher value of allocation proportion of invertase and sucrose during the early development stages of cotton fiber, which was propitious to supply a greater carbon source and energy for cellulose synthesis. Therefore, the minimum temperature in the nightime was a major factor correlated with the activity of sucrose metabolism enzymes in cotton fiber. Consequently, soluble sugar transformation and cellulose accumulation were closely associated with the minimum night temperature.展开更多
Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fib...Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fiber reinforced composite (BFRC). We studied the mechanical properties of the BFRCs manufactured from the mats with and without bamboo nodes. The pres- ence of nodes in BFM greatly reduced tensile strength, compressive strength, modulus of elasticity, and modulus of rupture of the BFRCs, while the BFRCs fabricated from BFMs with nodes possessed higher horizontal shear strength. Therefore, the nodes in bamboo culms were an important factor in the uniform distribution of mechanical properties, and BFMs should be homogeneously arranged to reduce the impact of nodes on the mechanical strengths of BFRCs.展开更多
Cotton fibers are unicellular trichomes derived from outer integument cells of the ovule.Our previously study showed that cotton R2R3 MYB transcript factor GaMYB2 could complement the Arabidopsis trichome mutant of gl...Cotton fibers are unicellular trichomes derived from outer integument cells of the ovule.Our previously study showed that cotton R2R3 MYB transcript factor GaMYB2 could complement the Arabidopsis trichome mutant of glabra1(gl1),suggesting that cotton fiber initiation and Arabidopsis展开更多
A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a co...A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a conventional papermaking process. Owing to the fast dewatering time, good repeatability and the facility to manufacture on a large scale, this process was used. It was revealed that the beaten PLA fiber was overall in machinery extrusion by the results of optical microscope and scanning electron microscope(SEM) observations. The improvement in the tensile index, burst index, tear index and other mechanical properties was considered as a key benefit as a result of adding bamboo fiber.展开更多
In this study,waste cotton fabric was used as cellulose raw material and pretreated in aqueous NaOH/urea solution system to investigate the effect of NaOH/urea pretreatment solution on the hydrolysis of cotton fiber.T...In this study,waste cotton fabric was used as cellulose raw material and pretreated in aqueous NaOH/urea solution system to investigate the effect of NaOH/urea pretreatment solution on the hydrolysis of cotton fiber.The cotton fiber was pretreated with different conditions of aqueous NaOH/urea solution,and the pretreated cotton fiber was hydrolyzed under the same conditions as the original cotton fiber.The results of characterization analysis showed that water retention value of pretreated cotton fiber was higher than that of unpretreated sample.Moreover,the cotton fiber presented both a convoluted structure and a coarser surface,XRD results suggested that the crystallinity degree of cellulose decreased dramatically,more cellulose II appeared,and the hydrogen bond is broken.Among the different pretreatment conditions,the pretreatment effect was the best when the reaction temperature was 0°C,the solid-liquid ratio was 2:50,and the NaOH/urea ratio was 7:12.The hydrolysis experiments of pretreated and unpretreated cotton fibers showed that when the hydrothermal temperature was 230°C,the heat preservation was 2 h,and the hydrochloric acid concentration was 5 wt.%,the glucose yield reached 29.99%.H+could catalyze the hydrolysis of cotton fiber more effectively due to damage to crystal structure and hydrogen bonds.展开更多
One of the impediments in the genetic improvement of cotton fiber is the paucity of information about genes associated with fiber development.Availability of chromosome arm substitution line CS-
An integrated cotton fiber quality index (ICFQI) model with cotton fiber qualities which can directly express cotton fiber integrated quality and spinning yarn quality was studied. The fiber length, strength, Micron...An integrated cotton fiber quality index (ICFQI) model with cotton fiber qualities which can directly express cotton fiber integrated quality and spinning yarn quality was studied. The fiber length, strength, Micronalre (fiber fineness and fiber maturity), uniformity of fiber length, and short fiber content are the pivotal indexes expressing ICFQI. All of the results above are the basic knowledge to build up the models of ICFQI. According to spinning consistency index (SCI), spinning strength and spinning yarn integrated quality, ICFQI was the best choice. As the methods of ICFQI had quite a lot of advantages like explicit mechanism, few independent variables. The integrated fiber quality index had a significant positive correlation with yarn strength and spinning consistency, significant negative correlation with yarn evenness and yarn thin places. In additional, the model of the relationship between ICFQI and SCI was established as: SCI=0. 235 6·ICFQI +56.153. It was concluded that ICFQI value was the shared reference index for the testing of fiber inspection agency and the selection and distribution of raw cotton bales by textile mills.展开更多
The fiber quality status is very important for super quality cotton production and diverse requirements of textile industry in China.In this study,the quality of cotton fiber samples which are collected from 13 major ...The fiber quality status is very important for super quality cotton production and diverse requirements of textile industry in China.In this study,the quality of cotton fiber samples which are collected from 13 major cotton production provinces between 2001 to 2005 were analyzed.Eight quality展开更多
Background:Mature cotton fiber secondary cell wall comprises largely of cellulose(>90%)and small amounts of xylan and lignin.Little is known about the cotton fiber xylan biosynthesis by far.Results:To comprehensive...Background:Mature cotton fiber secondary cell wall comprises largely of cellulose(>90%)and small amounts of xylan and lignin.Little is known about the cotton fiber xylan biosynthesis by far.Results:To comprehensively survey xylan biosynthetic genes in cotton fiber,we identified five IRX9,five IRX10,one IRX14,six IRX15,two FRA8,one PARVUS,eight GUX,four GXM,two RWA,two AXY9,13 TBL genes by using phylogenetic analysis coupled with expression profile analysis and co-expression analyses.In addition,we also identified two GT61 members,two GT47 members,and two DUF579 family members whose homologs in Arabidopsis were not functionally characterized.These 55 genes were regarded as the most probable genes to be involved in fiber xylan biosynthesis.Further complementation analysis indicated that one IRX10 like and two FRA8 related genes were able to partially recover the irregular xylem phenotype conferred by the xylan deficiency in their respective Arabidopsis mutant.We conclude that these genes are functional orthologs of respective genes that are implicated in GX biosynthesis.Conclusion:The list of 55 cotton genes presented here provides not only a solid basis to uncover the biosynthesis of xylan in cotton fiber,but also a genetic resource potentially useful for future studies aiming at fiber improvement via biotechnological approaches.展开更多
基金supported by the National Natural Science Foundation of China(31970516 and 32372104)the Foundation of Hubei Hongshan Laboratory(2021hszd014).
文摘Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose and lignin.To dissect the roles of hemicellulosic polysaccharides during fiber development,four IRREGULAR XYLEM 15(IRX15)genes,GhIRX15-1/-2/-3/-4,were functionally characterized in cotton.These genes encode DUF579 domain-containing proteins,which are homologs of AtIRX15 involved in xylan biosynthesis.The four GhIRX15 genes were predominantly expressed during fiber secondary wall thickening,and the encoded proteins were localized to the Golgi apparatus.Each GhIRX15 gene could restore the xylan deficient phenotype in the Arabidopsis irx15irx15l double mutant.Silencing of GhIRX15s in cotton resulted in shorter mature fibers with a thinner cell wall and reduced cellulose content as compared to the wild type.Intriguingly,GhIRX15-2 and GhIRX15-4 formed homodimers and heterodimers.In addition,the GhIRX15s showed physical interaction with glycosyltransferases GhGT43C,GhGT47A and GhGT47B,which are responsible for synthesis of the xylan backbone and reducing end sequence.Moreover,the GhIRX15s can form heterocomplexes with enzymes involved in xylan modification and side chain synthesis,such as GhGUX1/2,GhGXM1/2 and GhTBL1.These findings suggest that GhIRX15s participate in fiber xylan biosynthesis and modulate fiber development via forming large multiprotein complexes.
基金supported by National Key Research and Development Program of China(2022YFF1001400)the National Natural Science Foundation of China(31830062 and 32172071)+1 种基金Innovation and Application of Superior Crop Germplasm Resources of Shihezi(2021NY01)Breeding of New Cotton Varieties and Application of Transgenic Breeding Technology(2022NY01)。
文摘Cotton fiber is one of the main raw materials for the textile industry.In recent years,many cotton fiber quality QTL have been identified,but few were applied in breeding.In this study,a genome wide association study(GWAS)of fiber-quality traits in 265 upland cotton breeding intermediate lines(GhBreeding),combined with genome-wide selective sweep analysis(GSSA)and genomic selection(GS),revealed 25 QTL.Most of these QTL were ignored by only using GWAS.The CRISPR/Cas9 mutants of GhMYB_D13 had shorter fiber,which indicates the credibility of QTL to a certain extent.Then these QTL were verified in other cotton natural populations,5 stable QTL were found having broad potential for application in breeding.Additionally,among these 5 stable QTL,superior genotypes of 4 showed an enrichment in most improved new varieties widely cultivated currently.These findings provide insights for how to identify more QTL through combined multiple genomic analysis to apply in breeding.
文摘This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing.
基金supported by the National Natural Science Foundation of China (32170367 and 32000146)the Fundamental Research Funds for the Central Universities, China (2021TS066 and GK202103063)the Excellent Graduate Training Program of Shaanxi Normal University, China (LHRCCX23181).
文摘Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.
基金supported by the National Natural Science Foundation of China(31901577)the Fundamental Research Funds for the Central Universities,China(SWU-KT22035)the State Key Laboratory of Cotton Biology Open Fund,China(CB2021A32)。
文摘Calcium(Ca^(2+))plays an important role in determining plant growth and development because it maintains cell wall and membrane integrity.Therefore,understanding the role of Ca^(2+)in carbon and lipid metabolism could provide insights into the dynamic changes in cell membranes and cell walls during the rapid elongation of cotton fibers.In the present study,we found that the lack of Ca^(2+)promoted fiber elongation and rapid ovule expansion,but it also caused tissue browning in the ovule culture system.RNA-sequencing revealed that Ca^(2+)deficiency induced cells to be highly oxidized,and the expression of genes related to carbon metabolism and lipid metabolism was activated significantly.All gene members of nine key enzymes involved in glycolysis were up-regulated,and glucose was significantly reduced in Ca^(2+)deficiency-treated tissues.Ca^(2+)deficiency adjusted the flowing of glycolysis metabolic.However,low K^(+)recovered the expression levels of glycolysis genes and glucose content caused by Ca^(2+)deficiency.Electrospray ionizationtandem mass spectrometry technology was applied to uncover the dynamic profile of lipidome under Ca^(2+)and K^(+)interacted conditions.Ca^(2+)deficiency led to the decrease of fatty acid(FA),diacylglycerol(DAG),glycolipid and the significant increase of triacylglycerol(TAG),phospholipid phosphatidylethanolamine(PE),phosphatidylglycerol(PG),and PC(phosphatidylcholine).Low K^(+)restored the contents of FA,phospholipids,and glycolipids,effectively relieved the symptoms caused by Ca^(2+)deficiency,and recovered the development of fiber cells.This study revealed dynamic changes in transcript and metabolic levels and uncovered the signaling interaction of Ca^(2+)deficiency and low K^(+)in glycolysis and lipid metabolism during fiber development.
基金Funded by the Key Research and Development Projects in Shaanxi Province(No.2022SF-328)Science and Technology Project of Shaanxi Department of Transportation(Nos.19-10K,19-28K)Science and Technology Project of Henan Department of Transportation(No.2020J-2-3)。
文摘In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.
基金the support of the National Natural Sciences Foundation of China(U2003209 and 31871539 to YX)the China Postdoctoral Science Foundation(2021 T140569 and 2020 M673104 to JZ)。
文摘Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate light harvesting,and scavenge reactive oxygen species.Although carotenoids accumulate predominantly in rapidly elongating cotton fibers,their roles in cotton fiber development remain poorly understood.In this study,a fiber-specific promoter proSCFP was applied to drive the expression of GhOR1Del,a positive regulator of carotenoid accumulation,to upregulate the carotenoid level in cotton fiber in planta.Fiber length,strength,and fineness were increased in proSCFP:GhOR1Del transgenic cotton and abscisic acid(ABA)and ethylene contents were increased in elongating fibers.The ABA downstream regulator GhbZIP27a stimulated the expression of the ethylene synthase gene GhACO3 by binding to its promoter,suggesting that ABA promoted fiber elongation by increasing ethylene production.These findings suggest the involvement of carotenoids and ABA signaling in promoting cotton fiber elongation and provide a strategy for improving cotton fiber quality.
基金funded by the National Natural Science Foundation of China(31571722 and 31971984).
文摘IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transition period of cotton fiber development,and GhIQD10-overexpression lines showed shorter fibers.GhIQD10 interacted with GhCaM7 and the interaction was inhibited by Ca^(2+).In in vitro ovule culture,Ca^(2+)rescued the shorter-fiber phenotype of GhIQD10-overexpression lines,which were insensitive to the Ca^(2+)channel inhibitor verapamil and the Ca^(2+)pool release channel blocker 2-aminoethoxydiphenyl borate.We conclude that GhIQD10 affects cotton fiber elongation via Ca^(2+)signaling by interacting with GhCaM7.Brassinosteroid(BR)biosynthesis and signaling genes were up-regulated in GhIQD10-overexpression lines.Fiber development in these lines was not affected by epibrassinolide or the BR biosynthesis inhibitor brassinozole,indicating that the influence of GhIQD10 on fiber elongation was not associated with BR.
基金supported partially by the USDA-ARS Research Project#6054-44000-080-00D.
文摘Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment.
文摘Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell wall synthesis stages, we compared the respective transcriptomes and metabolite profiles. Comparative analysis of transcriptomes by cDNA array identified 633 genes that were differentially regulated during fiber development. Principal component analysis (PCA) using expressed genes as variables divided fiber samples into four groups, which are diagnostic of developmental stages. Similar grouping results are also found if we use non-polar or polar metabolites as variables for PCA of developing fibers. Auxin signaling, wall-loosening and lipid metabolism are highly active during fiber elongation, whereas cellulose biosynthesis is predominant and many other metabolic pathways are downregulated at the secondary cell wall synthesis stage. Transcript and metabolite profiles and enzyme activities are consistent in demonstrating a specialization process of cotton fiber development toward cellulose synthesis. These data demonstrate that cotton fiber cell at a certain stage has its own unique feature, and developmental stages of cotton fiber cells can be distinguished by their transcript and metabolite profiles. During the secondary cell wall synthesis stage, metabolic pathways are streamed into cellulose synthesis.
基金The research work presented in this paper is supported by the National Natural Science Foundation of China(Nos.51878354 and 51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402 and BK20130978)+1 种基金Six Talent Peak High-Level Projects of Jiangsu Province(No.JZ029)Qinglan Project of Jiangsu Higher Education Institutions.Any research results expressed in this paper are those of the writers and do not necessarily reflect the views of the foundations.
文摘Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement.Due to its renewable short natural growth cycle and abundance of bamboo resources,bamboo fiber has attracted attention over other natural fibers.Bamboo fiber has a complex natural structure but offers excellent mechanical properties,which are utilized in the textile,papermaking,construction,and composites industry.However,bam-boo fibers can easily absorb moisture and are prone to corrosion limiting their use in engineering applications.Therefore,a better understanding of bamboo fiber is particularly important.This paper reviews all existing research on the mechanical characterization of bamboo fiber with an emphasis on the extraction and treatment techniques,and their effect on relevant properties.The chemical composition of bamboo fibers has also been thoroughly investigated and presented herein.Current applications and future opportunities for bamboo fibers in various fields have been presented with a focus on research needs.This work can serve as a reference for future research on bamboo fiber.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China(20070759002)the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD21B02)
文摘Temperature is one of the key factors that influence cotton fiber synthesis at the late growth stage of cotton. In this paper, using two early-maturing cotton varieties as experimental materials, night temperature increase was stimulated in the field using far-infrared quartz tubes set in semi-mobile incubators and compared with the normal night temperatures (control) in order to investigate the effects of night temperature on the cotton fiber cellulose synthesis during secondary wall thickening. The results showed that the activity of sucrose synthase (SuSy) and sucrose phosphate synthase (SPS) quickly increased and remained constant during the development of cotton fiber, while the activity of acid invertase (AI) and alkaline invertase (NI) decreased, increased night temperatures prompted the rapid transformation of sugar, and all the available sucrose fully converted into cellulose. With night temperature increasing treatment, an increase in SuSy activity and concentration of sucrose indicate more sucrose converted into UDPG (uridin diphosphate-glucose) during the early and late stages of cotton fiber development. Furthermore, SPS activity and the increased concentration of fructose accelerated fructose degradation and reduced the inhibition of fructose to SuSy; maintaining higher value of allocation proportion of invertase and sucrose during the early development stages of cotton fiber, which was propitious to supply a greater carbon source and energy for cellulose synthesis. Therefore, the minimum temperature in the nightime was a major factor correlated with the activity of sucrose metabolism enzymes in cotton fiber. Consequently, soluble sugar transformation and cellulose accumulation were closely associated with the minimum night temperature.
基金financially supported by the Key Laboratory of Wood Industry and Furniture Engineering of Sichuan Provincial Colleges and Universitiesthe National Forestry Public Welfare Scientific Research Program(201304503)the Science and Technology Innovation Foundation for College Students
文摘Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fiber reinforced composite (BFRC). We studied the mechanical properties of the BFRCs manufactured from the mats with and without bamboo nodes. The pres- ence of nodes in BFM greatly reduced tensile strength, compressive strength, modulus of elasticity, and modulus of rupture of the BFRCs, while the BFRCs fabricated from BFMs with nodes possessed higher horizontal shear strength. Therefore, the nodes in bamboo culms were an important factor in the uniform distribution of mechanical properties, and BFMs should be homogeneously arranged to reduce the impact of nodes on the mechanical strengths of BFRCs.
文摘Cotton fibers are unicellular trichomes derived from outer integument cells of the ovule.Our previously study showed that cotton R2R3 MYB transcript factor GaMYB2 could complement the Arabidopsis trichome mutant of glabra1(gl1),suggesting that cotton fiber initiation and Arabidopsis
基金Funded by thethe National Key Technology R&D Program for the 12th Five-Year Plan(No.2013BAC01B03)the Fundamental Research Funds for the Central Universties(2014ZZ0062)
文摘A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a conventional papermaking process. Owing to the fast dewatering time, good repeatability and the facility to manufacture on a large scale, this process was used. It was revealed that the beaten PLA fiber was overall in machinery extrusion by the results of optical microscope and scanning electron microscope(SEM) observations. The improvement in the tensile index, burst index, tear index and other mechanical properties was considered as a key benefit as a result of adding bamboo fiber.
基金supported by the National Natural Science Foundation of China[Nos.51703153 and 21802101].
文摘In this study,waste cotton fabric was used as cellulose raw material and pretreated in aqueous NaOH/urea solution system to investigate the effect of NaOH/urea pretreatment solution on the hydrolysis of cotton fiber.The cotton fiber was pretreated with different conditions of aqueous NaOH/urea solution,and the pretreated cotton fiber was hydrolyzed under the same conditions as the original cotton fiber.The results of characterization analysis showed that water retention value of pretreated cotton fiber was higher than that of unpretreated sample.Moreover,the cotton fiber presented both a convoluted structure and a coarser surface,XRD results suggested that the crystallinity degree of cellulose decreased dramatically,more cellulose II appeared,and the hydrogen bond is broken.Among the different pretreatment conditions,the pretreatment effect was the best when the reaction temperature was 0°C,the solid-liquid ratio was 2:50,and the NaOH/urea ratio was 7:12.The hydrolysis experiments of pretreated and unpretreated cotton fibers showed that when the hydrothermal temperature was 230°C,the heat preservation was 2 h,and the hydrochloric acid concentration was 5 wt.%,the glucose yield reached 29.99%.H+could catalyze the hydrolysis of cotton fiber more effectively due to damage to crystal structure and hydrogen bonds.
文摘One of the impediments in the genetic improvement of cotton fiber is the paucity of information about genes associated with fiber development.Availability of chromosome arm substitution line CS-
基金China/CSIRO Project on Predicting Yarn Quality from Cotton Fineness and Maturity Measurements(No. 400012)
文摘An integrated cotton fiber quality index (ICFQI) model with cotton fiber qualities which can directly express cotton fiber integrated quality and spinning yarn quality was studied. The fiber length, strength, Micronalre (fiber fineness and fiber maturity), uniformity of fiber length, and short fiber content are the pivotal indexes expressing ICFQI. All of the results above are the basic knowledge to build up the models of ICFQI. According to spinning consistency index (SCI), spinning strength and spinning yarn integrated quality, ICFQI was the best choice. As the methods of ICFQI had quite a lot of advantages like explicit mechanism, few independent variables. The integrated fiber quality index had a significant positive correlation with yarn strength and spinning consistency, significant negative correlation with yarn evenness and yarn thin places. In additional, the model of the relationship between ICFQI and SCI was established as: SCI=0. 235 6·ICFQI +56.153. It was concluded that ICFQI value was the shared reference index for the testing of fiber inspection agency and the selection and distribution of raw cotton bales by textile mills.
文摘The fiber quality status is very important for super quality cotton production and diverse requirements of textile industry in China.In this study,the quality of cotton fiber samples which are collected from 13 major cotton production provinces between 2001 to 2005 were analyzed.Eight quality
基金National Natural Science Foundation of China,China[grant numbers:3167173531970516]+1 种基金Hubei provincial Natural Science Foundation,China[grant number:2016CFA071]self-determined research funds of Central China Normal University from the colleges’basic research and operation of Ministry of Education,China(CCNU18TS021).
文摘Background:Mature cotton fiber secondary cell wall comprises largely of cellulose(>90%)and small amounts of xylan and lignin.Little is known about the cotton fiber xylan biosynthesis by far.Results:To comprehensively survey xylan biosynthetic genes in cotton fiber,we identified five IRX9,five IRX10,one IRX14,six IRX15,two FRA8,one PARVUS,eight GUX,four GXM,two RWA,two AXY9,13 TBL genes by using phylogenetic analysis coupled with expression profile analysis and co-expression analyses.In addition,we also identified two GT61 members,two GT47 members,and two DUF579 family members whose homologs in Arabidopsis were not functionally characterized.These 55 genes were regarded as the most probable genes to be involved in fiber xylan biosynthesis.Further complementation analysis indicated that one IRX10 like and two FRA8 related genes were able to partially recover the irregular xylem phenotype conferred by the xylan deficiency in their respective Arabidopsis mutant.We conclude that these genes are functional orthologs of respective genes that are implicated in GX biosynthesis.Conclusion:The list of 55 cotton genes presented here provides not only a solid basis to uncover the biosynthesis of xylan in cotton fiber,but also a genetic resource potentially useful for future studies aiming at fiber improvement via biotechnological approaches.