This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used s...This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing.展开更多
Bamboo fibers(BFs),with features of renewability and biodegradability,have been widely used in paper-making products.In order to improve the mechanical properties and water absorption behaviors of the BF paper,bacteri...Bamboo fibers(BFs),with features of renewability and biodegradability,have been widely used in paper-making products.In order to improve the mechanical properties and water absorption behaviors of the BF paper,bacterial cellulose nanofibers(BCNFs)as environmentally friendly nano-fibrillated cellulose(NFC)were combined with BFs.The structures and properties of the BF/BCNF composite paper were characterized by field emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD),Fourier transforms infrared(FTIR)spectroscopy,mechanical tests,pore size tests,and water absorption tests.The results indicated that the addition of BCNFs could significantly improve the water absorption capacity and mechanical properties.The water absorption ratio of the BF/BCNF composite paper with a BCNF mass fraction of 9%comes to 443%,about 1.33 times that of the pure BF paper.At the same BCNF content,the tensile strength of the BF/BCNF composite paper in dry and wet states was 12.37 MPa and 200.9 kPa,respectively,increasing by 98.24%and 136.91%as compared with that of the BF paper.展开更多
Bamboo viscose fibers and conventional viscose fibers were measured by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analyzer/FTIR spectr...Bamboo viscose fibers and conventional viscose fibers were measured by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analyzer/FTIR spectrometer (TG-FTIR) respectively. At last, the method based on the testing of the Fourier transform near infrared (NIR) spectra was proposed to identify these two kinds of fibers. The discrimination models between bamboo viscose fibers with conventional viscose fibers were built by means of Ward's algorithm and Hierarchical cluster analysis(HCA) after the first derivative and vector normalization pretreatment, and were verified finally. The results indicate that these two kinds of fibers are similar in their morphology both of cross-section and longitudinal direction. What's more, the FTIR spectra, the thermostability, and decomposition products of TG-FTIR experiment are similar, and the testing results contribute little to the effective identification of the two fibers. However, the accuracy of the NIR spectra model is high, and the two kinds of fibers can be classified into two separated groups to achieve the identification simply and exactly.展开更多
Understanding the assembly and spatial arrangement of bamboo cell wall components is crucial for its optimal utilization.Bamboo cell walls consist of aggregates of cellulose microfibrils and matrix.In the present stud...Understanding the assembly and spatial arrangement of bamboo cell wall components is crucial for its optimal utilization.Bamboo cell walls consist of aggregates of cellulose microfibrils and matrix.In the present study,the size and arrangement of cellulose microfibril aggregates in the cell walls of sclerenchyma fibers and parenchyma cells in moso bamboo were investigated with NMR and FE-SEM.The NMR measurement showed that the characteristic sizes of the microfibril aggregates of fibers and parenchyma cells were approximately 25.8 nm and 18.8 nm,respectively.Furthermore,high-resolution SEM showed the size of microfibril aggregates varied little across the cell wall of sclerenchyma fiber.However,there were significant size differences between the broad and narrow lamellae both in fiber and parenchyma cells,which is thought to be closely related to the orientation of microfibrils in these layers.The microfibril aggregates in the fibers mainly appear in a random arrangement,although occasionally in a radial or tangential arrangement in individual cell.Parenchyma cells have a relatively thinner cell wall layers,in which microfibril aggregates appear in a concentric lamellar arrangement.展开更多
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar...Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.展开更多
Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement.Due to its renewable short natural growth cycle and abundance of bamboo resources,bamboo fiber has attracte...Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement.Due to its renewable short natural growth cycle and abundance of bamboo resources,bamboo fiber has attracted attention over other natural fibers.Bamboo fiber has a complex natural structure but offers excellent mechanical properties,which are utilized in the textile,papermaking,construction,and composites industry.However,bam-boo fibers can easily absorb moisture and are prone to corrosion limiting their use in engineering applications.Therefore,a better understanding of bamboo fiber is particularly important.This paper reviews all existing research on the mechanical characterization of bamboo fiber with an emphasis on the extraction and treatment techniques,and their effect on relevant properties.The chemical composition of bamboo fibers has also been thoroughly investigated and presented herein.Current applications and future opportunities for bamboo fibers in various fields have been presented with a focus on research needs.This work can serve as a reference for future research on bamboo fiber.展开更多
Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fib...Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fiber reinforced composite (BFRC). We studied the mechanical properties of the BFRCs manufactured from the mats with and without bamboo nodes. The pres- ence of nodes in BFM greatly reduced tensile strength, compressive strength, modulus of elasticity, and modulus of rupture of the BFRCs, while the BFRCs fabricated from BFMs with nodes possessed higher horizontal shear strength. Therefore, the nodes in bamboo culms were an important factor in the uniform distribution of mechanical properties, and BFMs should be homogeneously arranged to reduce the impact of nodes on the mechanical strengths of BFRCs.展开更多
A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a co...A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a conventional papermaking process. Owing to the fast dewatering time, good repeatability and the facility to manufacture on a large scale, this process was used. It was revealed that the beaten PLA fiber was overall in machinery extrusion by the results of optical microscope and scanning electron microscope(SEM) observations. The improvement in the tensile index, burst index, tear index and other mechanical properties was considered as a key benefit as a result of adding bamboo fiber.展开更多
In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by ...In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by nano CaCO_(3)blending(BM)and impregnation modification(IM)technology.The composites were produced using hot press(HPMP),extrusion(EMP)and injection molding process(IMP).The physical morphology of BPF was similar at different manufacturing processes.Compared to the samples manufactured by HPMP,a decrease in the(specific)flexural strength of BPF/HDPE composites and an increase in those of composites treated by nano CaCO_(3)manufactured by EMP and IMP were observed.The injection molded composites exhibited the best values in the(specific)impact strength,(specific)tensile properties.IM had a greater effect on the rheological behavior of the composites than BM,and nano CaCO_(3)treatment most effectively affected the performance of the extrusion molded composites.展开更多
In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtur...In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.展开更多
This study investigated the mechanical properties and microstructural characteristics of fiberboard composite produced by naturally-bonded Malaysian bamboo fiber(Bambusa vulgaris).The components that obtained through ...This study investigated the mechanical properties and microstructural characteristics of fiberboard composite produced by naturally-bonded Malaysian bamboo fiber(Bambusa vulgaris).The components that obtained through soda pulping of bamboo culms such as fiber and black liquor,were used for the preparation of high-density fibreboard composite at two target densities of 850 and 950 kg/m^(3).The bamboo fiberboard composite(BFC)were then produced at 200°C and two pressing parameters of 125 and 175 s/mm.The mechanical properties,e.g.,flexural strength and internal bonding(IB)of BFC samples were evaluated according to BS EN 310:1993 and BS EN 319:1993,respectively.It was found that the mechanical performance of the composite with 850 kg/m^(3)density was significantly higher than 950 kg/m^(3)ones,especially for the samples with 125 s/mm pressing parameter.Microstructure characteristic of the BFC samples illustrated that the fiber linkages were cracked in the composites with higher density,e.g.,the composite with the density of 950 kg/m^(3)and also black liquor were slightly degraded at longer pressing time,which led to the reduction in mechanical properties,especially in IB strength.展开更多
In this paper,the residue from bamboo factory has been used to design photo-Fenton catalyst,which has the advantages of low cost and magnetic recycling.The photo-Fenton catalytic performance of the biocarbon-based cat...In this paper,the residue from bamboo factory has been used to design photo-Fenton catalyst,which has the advantages of low cost and magnetic recycling.The photo-Fenton catalytic performance of the biocarbon-based catalyst was excellent and its optimal preparation process was also explored by response surface methodology.First,bamboo-carbon fiber was selected as the photo-Fenton catalyst carrier.Subsequently,the surface of the car-bon fiber was modified,with which dopamine,nano-Fe_(3)O_(4) and nano-TiO_(2) were successively loaded by hydro-thermal method.After the single factor tests,four factors including dopamine concentration,ferric chloride mass,P25 titanium dioxide mass and liquid-solid ratio were selected as the characteristic values.The degradation efficiency of photo-Fenton catalyst to methylene blue(MB)solution was treated as the response value.After the analysis of the response surface optimization,it was shown that the significance sequence of the selected 4 factors in terms of the MB degradation efficiency was arranged as follows:dopamine concentration>liquid-solid ratio>P25 titanium dioxide quality>ferric chloride quality.The optimal process parameters of fiber-carbon catalyst were affirmed as follows:the 1.7 mg/mL concentration of dopamine,the 1.2 g mass of ferric chloride,the 0.2 g mass of P25 titanium dioxide and the liquid-solid ratio of 170 mL/g.The experiment-measured average MB degra-dation efficiency performed by the optimized catalyst was 99.3%,which was nearly similar to the model-predicted value of 98.9%.It showed that the prediction model and response surface model were accurate and reliable.The results from response surface optimization could provide a good reference to design bamboo-based Fenton-like catalyst with excellent catalytic performance.展开更多
Facile mass transport channel and accessible active sites are crucial for binder-free air electrode catalysts in rechargeable flexible zinc-air battery(ZAB).Herein,a ZnS/NH3 dual-assisted pyrolysis strategy is propose...Facile mass transport channel and accessible active sites are crucial for binder-free air electrode catalysts in rechargeable flexible zinc-air battery(ZAB).Herein,a ZnS/NH3 dual-assisted pyrolysis strategy is proposed to prepare N/S-doped hierarchical porous bamboo carbon cloth(HP-NS-BCC)as binder-free air electrode catalyst for ZAB.BCC fabric with abundant micropores is firstly used as flexible carbon support to facilitate the heteroatom-doping and construct the hierarchical porous structure.ZnS nanospheres and NH3 activization together facilitate the electronic modulation of carbon matrix by N/S-doping and optimize the macro/meso/micropores structure of carbon fibers.Benefiting from the highly-exposed N/S-induced sites with enhanced intrinsic activity,the optimized mass transport of biocarbon fibers,as well as the ultra-large specific surface area of 2436.1 m^(2)·g^(-1),the resultant HP-NS-BCC catalyst exhibits improved kinetics for oxygen reduction/evolution reaction.When applied to rechargeable aqueous ZABs,it achieves a significant peak power density of 249.1 mW·cm^(-2).As binder-free air electrode catalyst,the flexible ZAB also displays stable cycling over 500 cycles with a minimal voltage gap of 0.42 V,showcasing promising applications in flexible electronic devices.展开更多
Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials ...Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials for multifunctional wearable devices with low-cost and high efficiency methods are highly desirable.Here,a conductive graphene/microsphere/bamboo fiber(GMB)nanocomposite paper with hierarchical surface microstructures is successfully fabricated through a simple vacuum-assisted filtration followed by thermo-foaming process.The as-prepared microstructured GMB nanocomposite paper exhibits not only a high volume electrical conductivity of~45 S/m but also an excellent electrical stability(i.e.,relative changes in resistance are less than 3%under stretching,folding,and compressing loadings)due to its unique structure features.With this microstructured nanocomposite paper as active sensing layer,microstructured pressure sensors with a high sensitivity(-4 kPa^(-1)),a wide sensing range(0–5 kPa),and a rapid response time(about 140 ms)are realized.In addition,benefitting from the outstanding electrical stability and mechanical flexibility,the microstructured nanocomposite paper is further demonstrated as a low-voltage Joule heating device.The surface temperature of the microstructured nanocomposite paper rapidly reaches over 80℃ when applying a relatively low voltage of 7 V,indicating its potential in human thermotherapy and thermal management.展开更多
Non-biodegradable and toxic photocatalysts pose as secondary threats to the environmental security.In this work,non-toxic biocomposites were prepared using natural bamboo cellulose fibers(CF),polyvinyl alcohols(PVAs),...Non-biodegradable and toxic photocatalysts pose as secondary threats to the environmental security.In this work,non-toxic biocomposites were prepared using natural bamboo cellulose fibers(CF),polyvinyl alcohols(PVAs),BiVO_(4),and carbon dots(CDs)from biomaterials.Thereafter,their optical properties,chemical characterizations,and photocatalytic performances were evaluated.The novel BiVO_(4)(-)CF@CDs(-)PVA composites were prepared via the combined implementation of in situ and impregnation methods.The optical properties revealed that the CDs and fibers increased the range and intensity of light absorption.The PVAs were used as the shield and dispersant to enhance stability because they have numerous chemical groups.In view of the various possible paths of electron migration,the enhanced photocatalytic activity of BiVO_(4)(-)CF@CDs(-)PVA composites for tetracycline degradation was observed under visible light illumination.The origins of the structure,morphology,and optical mechanism in the enhancement of the photocatalytic ability of BiVO_(4)(-)CF@CDs(-)PVA composites were discussed and demonstrated.展开更多
Monosized nanoparticles of 57.3 nm were prepared by cationic emulsion polymerization using a polymerizable emulsifier DMHB.The adsorption of nanoparticles onto bamboo fibers was measured by conductometric titration.Th...Monosized nanoparticles of 57.3 nm were prepared by cationic emulsion polymerization using a polymerizable emulsifier DMHB.The adsorption of nanoparticles onto bamboo fibers was measured by conductometric titration.The results indicated that the adsorption capacity increased with increasing contact time until 120 min.The equilibrium data for nanoparticles adsorption onto bamboo fibers were well fitted to the Langmuir equation.Moreover,the monolayer adsorption capacity of nanoparticles in the concentration range(from 0.03 g/L to 0.6 g/L) studied,as calculated from Langmuir isotherm model at 25 C,was found to be 38.61 mg/g of fibers.The SEM images showed that the nanoparticles form a uniform monolayer on bamboo fiber surfaces.展开更多
In order to improve the mechanical properties and toughness of phenolic foams,a reinforcement method using two kinds of bamboo fibers was optimized with respect to the fiber contents.The compressive and flexural prope...In order to improve the mechanical properties and toughness of phenolic foams,a reinforcement method using two kinds of bamboo fibers was optimized with respect to the fiber contents.The compressive and flexural properties,thermal stability,friability and morphology of the phenolic foam composites were studied.The mechanical properties of the pristine foam and composites were evaluated by measuring the compressive strength.The results showed that the greatest mechanical properties were achieved by incorporating 2.5wt%of the reinforcement,and the compressive and flexural strengths of the two composites increased by 26.21%and 24.35%,respectively,compared with that of the pristine foam.The results of thermogravimetric testing demonstrated that the addition of bamboo fiber imparted better thermal stability to the phenolic foam,which was mainly attributed to the higher initial thermal decomposition temperature of the bamboo fiber.However,the influences of both reinforcements on the thermal stability of the material were negligible.The incorporation of bamboo fiber decreased the friability of the phenolic foam.Furthermore,the reduction in friability of the foam composites with longer lengths were higher than that in foams with shorter bamboo fibers.Moreover,the morphology and cell sizes of the fiber-reinforced phenolic foams were analyzed by scanning electron microscopy,the results indicated strong bonding between the fibers and phenolic matrix,and the incorporation of the bamboo fibers into the foam resulted in increased cell size of the material.Finally,the thermal conductivity and flame resistance of the phenolic foams reinforced by the bamboo fibers were also measured.展开更多
The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface te...The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface tension of natural fibers and the disadvantages of techniques used were discussed.Although numerous techniques have been employed to characterize surface tension of natural fibers,it seems that the credibility of results obtained may often be dubious.In this paper,critical surface tension estimates were obtained from computer aided machine vision based measurement.Data were then analyzed by the least squares method to estimate the components of SFE.SFE was estimated by least squares analysis and also by Schultz' method.By using the Fowkes method the polar and disperse fractions of the surface free energy of bamboo fiber materials can be obtained.Strictly speaking,this method is based on a combination of the knowledge of Fowkes theory. SFE is desirable when adhesion is required,and it avoids some of the limitations of existing studies which has been proposed.The calculation steps described in this research are only intended to explain the methods.The results show that the method that only determines SFE as a single parameter may be unable to differentiate adequately between bamboo fiber materials,but it is feasible and very efficient.In order to obtain the maximum performance from the computer aided machine vision based measurement instruments,this measurement should be recommended and kept available for reference.展开更多
文摘This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials.Chemical(alkali)and physical(dry etching plasma)treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices.The influence of these treatments on the fibers’performance,chemical composition,and surface morphology were analyzed.Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40%and 20%,respectively,whereas plasma treatments maintain the fibers’mechanical performance.FTIR spectroscopy revealed significant alterations in chemical composition due to alkali treatments,while plasma-treated fibers showed minimal changes.Surface examination through Scanning Electron Microscopy(SEM)revealed post-treatment modifications in both cases;alkali treatments served as a cleanser,eliminating lignin and hemicellulose from the fiber surface,whereas plasma treatments also produce rough surfaces.These results validate the impact of the treatments on the fiber mechanical performance,which opens up possibilities for using Guadua angustifolia fibers as an alternative reinforcement in composite manufacturing.
基金Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province,China(No.MTC2020-10)。
文摘Bamboo fibers(BFs),with features of renewability and biodegradability,have been widely used in paper-making products.In order to improve the mechanical properties and water absorption behaviors of the BF paper,bacterial cellulose nanofibers(BCNFs)as environmentally friendly nano-fibrillated cellulose(NFC)were combined with BFs.The structures and properties of the BF/BCNF composite paper were characterized by field emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD),Fourier transforms infrared(FTIR)spectroscopy,mechanical tests,pore size tests,and water absorption tests.The results indicated that the addition of BCNFs could significantly improve the water absorption capacity and mechanical properties.The water absorption ratio of the BF/BCNF composite paper with a BCNF mass fraction of 9%comes to 443%,about 1.33 times that of the pure BF paper.At the same BCNF content,the tensile strength of the BF/BCNF composite paper in dry and wet states was 12.37 MPa and 200.9 kPa,respectively,increasing by 98.24%and 136.91%as compared with that of the BF paper.
基金General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of Chinathe Project of Shanghai Municipal Bureau of Quality and Technical Supervision,China(No. 2010-Z17)
文摘Bamboo viscose fibers and conventional viscose fibers were measured by optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and thermogravimetric analyzer/FTIR spectrometer (TG-FTIR) respectively. At last, the method based on the testing of the Fourier transform near infrared (NIR) spectra was proposed to identify these two kinds of fibers. The discrimination models between bamboo viscose fibers with conventional viscose fibers were built by means of Ward's algorithm and Hierarchical cluster analysis(HCA) after the first derivative and vector normalization pretreatment, and were verified finally. The results indicate that these two kinds of fibers are similar in their morphology both of cross-section and longitudinal direction. What's more, the FTIR spectra, the thermostability, and decomposition products of TG-FTIR experiment are similar, and the testing results contribute little to the effective identification of the two fibers. However, the accuracy of the NIR spectra model is high, and the two kinds of fibers can be classified into two separated groups to achieve the identification simply and exactly.
基金The authors gratefully acknowledge the National Natural Science Foundation(31770600)for its financial support.
文摘Understanding the assembly and spatial arrangement of bamboo cell wall components is crucial for its optimal utilization.Bamboo cell walls consist of aggregates of cellulose microfibrils and matrix.In the present study,the size and arrangement of cellulose microfibril aggregates in the cell walls of sclerenchyma fibers and parenchyma cells in moso bamboo were investigated with NMR and FE-SEM.The NMR measurement showed that the characteristic sizes of the microfibril aggregates of fibers and parenchyma cells were approximately 25.8 nm and 18.8 nm,respectively.Furthermore,high-resolution SEM showed the size of microfibril aggregates varied little across the cell wall of sclerenchyma fiber.However,there were significant size differences between the broad and narrow lamellae both in fiber and parenchyma cells,which is thought to be closely related to the orientation of microfibrils in these layers.The microfibril aggregates in the fibers mainly appear in a random arrangement,although occasionally in a radial or tangential arrangement in individual cell.Parenchyma cells have a relatively thinner cell wall layers,in which microfibril aggregates appear in a concentric lamellar arrangement.
文摘Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.
基金The research work presented in this paper is supported by the National Natural Science Foundation of China(Nos.51878354 and 51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402 and BK20130978)+1 种基金Six Talent Peak High-Level Projects of Jiangsu Province(No.JZ029)Qinglan Project of Jiangsu Higher Education Institutions.Any research results expressed in this paper are those of the writers and do not necessarily reflect the views of the foundations.
文摘Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement.Due to its renewable short natural growth cycle and abundance of bamboo resources,bamboo fiber has attracted attention over other natural fibers.Bamboo fiber has a complex natural structure but offers excellent mechanical properties,which are utilized in the textile,papermaking,construction,and composites industry.However,bam-boo fibers can easily absorb moisture and are prone to corrosion limiting their use in engineering applications.Therefore,a better understanding of bamboo fiber is particularly important.This paper reviews all existing research on the mechanical characterization of bamboo fiber with an emphasis on the extraction and treatment techniques,and their effect on relevant properties.The chemical composition of bamboo fibers has also been thoroughly investigated and presented herein.Current applications and future opportunities for bamboo fibers in various fields have been presented with a focus on research needs.This work can serve as a reference for future research on bamboo fiber.
基金financially supported by the Key Laboratory of Wood Industry and Furniture Engineering of Sichuan Provincial Colleges and Universitiesthe National Forestry Public Welfare Scientific Research Program(201304503)the Science and Technology Innovation Foundation for College Students
文摘Dendrocalamus farinosus and Phyllostachys heterocycla bamboo logs were subjected to a novel treat- ment process for the preparation of bamboo fiber mats (BFMs), and the obtained BFM were used to fabricate bamboo fiber reinforced composite (BFRC). We studied the mechanical properties of the BFRCs manufactured from the mats with and without bamboo nodes. The pres- ence of nodes in BFM greatly reduced tensile strength, compressive strength, modulus of elasticity, and modulus of rupture of the BFRCs, while the BFRCs fabricated from BFMs with nodes possessed higher horizontal shear strength. Therefore, the nodes in bamboo culms were an important factor in the uniform distribution of mechanical properties, and BFMs should be homogeneously arranged to reduce the impact of nodes on the mechanical strengths of BFRCs.
基金Funded by thethe National Key Technology R&D Program for the 12th Five-Year Plan(No.2013BAC01B03)the Fundamental Research Funds for the Central Universties(2014ZZ0062)
文摘A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a conventional papermaking process. Owing to the fast dewatering time, good repeatability and the facility to manufacture on a large scale, this process was used. It was revealed that the beaten PLA fiber was overall in machinery extrusion by the results of optical microscope and scanning electron microscope(SEM) observations. The improvement in the tensile index, burst index, tear index and other mechanical properties was considered as a key benefit as a result of adding bamboo fiber.
基金This study is financially supported by the Basic Research Operating Expenses Program of International Centre for Bamboo and Rattan(1632021002).
文摘In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by nano CaCO_(3)blending(BM)and impregnation modification(IM)technology.The composites were produced using hot press(HPMP),extrusion(EMP)and injection molding process(IMP).The physical morphology of BPF was similar at different manufacturing processes.Compared to the samples manufactured by HPMP,a decrease in the(specific)flexural strength of BPF/HDPE composites and an increase in those of composites treated by nano CaCO_(3)manufactured by EMP and IMP were observed.The injection molded composites exhibited the best values in the(specific)impact strength,(specific)tensile properties.IM had a greater effect on the rheological behavior of the composites than BM,and nano CaCO_(3)treatment most effectively affected the performance of the extrusion molded composites.
基金Funded by the Key Research and Development Projects in Shaanxi Province(No.2022SF-328)Science and Technology Project of Shaanxi Department of Transportation(Nos.19-10K,19-28K)Science and Technology Project of Henan Department of Transportation(No.2020J-2-3)。
文摘In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.
基金the Fundamental Research Grant Scheme(FRGS),Ministry of Higher Education Malaysia(Project Code:600-IRDC/ST/FRGS.5/3/1156)entitled“Strength Properties of Environmental-Friendly Binderless Bamboo Medium Density Fibreboard(bBMDF)”.
文摘This study investigated the mechanical properties and microstructural characteristics of fiberboard composite produced by naturally-bonded Malaysian bamboo fiber(Bambusa vulgaris).The components that obtained through soda pulping of bamboo culms such as fiber and black liquor,were used for the preparation of high-density fibreboard composite at two target densities of 850 and 950 kg/m^(3).The bamboo fiberboard composite(BFC)were then produced at 200°C and two pressing parameters of 125 and 175 s/mm.The mechanical properties,e.g.,flexural strength and internal bonding(IB)of BFC samples were evaluated according to BS EN 310:1993 and BS EN 319:1993,respectively.It was found that the mechanical performance of the composite with 850 kg/m^(3)density was significantly higher than 950 kg/m^(3)ones,especially for the samples with 125 s/mm pressing parameter.Microstructure characteristic of the BFC samples illustrated that the fiber linkages were cracked in the composites with higher density,e.g.,the composite with the density of 950 kg/m^(3)and also black liquor were slightly degraded at longer pressing time,which led to the reduction in mechanical properties,especially in IB strength.
基金funding from Hunan Provincial Key Research and Development Program(2020WK2018)Hunan Provincial Forestry Technological Innovation Funds(XLK202107-3)+2 种基金Scientific Research Project of Hunan Education Department(19A505,21B0242)National Natural Science Foundation of China(No.21908251)Hunan Provincial Natural Science Foundation of China(No.2020JJ2058).
文摘In this paper,the residue from bamboo factory has been used to design photo-Fenton catalyst,which has the advantages of low cost and magnetic recycling.The photo-Fenton catalytic performance of the biocarbon-based catalyst was excellent and its optimal preparation process was also explored by response surface methodology.First,bamboo-carbon fiber was selected as the photo-Fenton catalyst carrier.Subsequently,the surface of the car-bon fiber was modified,with which dopamine,nano-Fe_(3)O_(4) and nano-TiO_(2) were successively loaded by hydro-thermal method.After the single factor tests,four factors including dopamine concentration,ferric chloride mass,P25 titanium dioxide mass and liquid-solid ratio were selected as the characteristic values.The degradation efficiency of photo-Fenton catalyst to methylene blue(MB)solution was treated as the response value.After the analysis of the response surface optimization,it was shown that the significance sequence of the selected 4 factors in terms of the MB degradation efficiency was arranged as follows:dopamine concentration>liquid-solid ratio>P25 titanium dioxide quality>ferric chloride quality.The optimal process parameters of fiber-carbon catalyst were affirmed as follows:the 1.7 mg/mL concentration of dopamine,the 1.2 g mass of ferric chloride,the 0.2 g mass of P25 titanium dioxide and the liquid-solid ratio of 170 mL/g.The experiment-measured average MB degra-dation efficiency performed by the optimized catalyst was 99.3%,which was nearly similar to the model-predicted value of 98.9%.It showed that the prediction model and response surface model were accurate and reliable.The results from response surface optimization could provide a good reference to design bamboo-based Fenton-like catalyst with excellent catalytic performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.52102260,22379056,52202243)the project funded by China Postdoctoral Science Foundation(Grant Nos.2022M711545,2022M711371)+1 种基金Research and Practice Innovation Plan of Postgraduate Training Innovation Project in Jiangsu Province(SJCX23_2156)Shanghai Frontiers Research Center of the Hadal Biosphere,SciTech Funding by CSPFTZ Lingang Special Area Marine Biomedical Innovation Platform.
文摘Facile mass transport channel and accessible active sites are crucial for binder-free air electrode catalysts in rechargeable flexible zinc-air battery(ZAB).Herein,a ZnS/NH3 dual-assisted pyrolysis strategy is proposed to prepare N/S-doped hierarchical porous bamboo carbon cloth(HP-NS-BCC)as binder-free air electrode catalyst for ZAB.BCC fabric with abundant micropores is firstly used as flexible carbon support to facilitate the heteroatom-doping and construct the hierarchical porous structure.ZnS nanospheres and NH3 activization together facilitate the electronic modulation of carbon matrix by N/S-doping and optimize the macro/meso/micropores structure of carbon fibers.Benefiting from the highly-exposed N/S-induced sites with enhanced intrinsic activity,the optimized mass transport of biocarbon fibers,as well as the ultra-large specific surface area of 2436.1 m^(2)·g^(-1),the resultant HP-NS-BCC catalyst exhibits improved kinetics for oxygen reduction/evolution reaction.When applied to rechargeable aqueous ZABs,it achieves a significant peak power density of 249.1 mW·cm^(-2).As binder-free air electrode catalyst,the flexible ZAB also displays stable cycling over 500 cycles with a minimal voltage gap of 0.42 V,showcasing promising applications in flexible electronic devices.
基金We gratefully acknowledge the National Natural Science Foundation of China(Nos.11872132,51803016 and U1837204)the China Postdoctoral Science Foundation(No.2020M673124)+1 种基金the Natural Science Foundation of Chongqing(No.cstc2020jcyj-bshX0001)the Competitive Internal Research Award of Khalifa University(CIRA-2018-16).
文摘Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials for multifunctional wearable devices with low-cost and high efficiency methods are highly desirable.Here,a conductive graphene/microsphere/bamboo fiber(GMB)nanocomposite paper with hierarchical surface microstructures is successfully fabricated through a simple vacuum-assisted filtration followed by thermo-foaming process.The as-prepared microstructured GMB nanocomposite paper exhibits not only a high volume electrical conductivity of~45 S/m but also an excellent electrical stability(i.e.,relative changes in resistance are less than 3%under stretching,folding,and compressing loadings)due to its unique structure features.With this microstructured nanocomposite paper as active sensing layer,microstructured pressure sensors with a high sensitivity(-4 kPa^(-1)),a wide sensing range(0–5 kPa),and a rapid response time(about 140 ms)are realized.In addition,benefitting from the outstanding electrical stability and mechanical flexibility,the microstructured nanocomposite paper is further demonstrated as a low-voltage Joule heating device.The surface temperature of the microstructured nanocomposite paper rapidly reaches over 80℃ when applying a relatively low voltage of 7 V,indicating its potential in human thermotherapy and thermal management.
基金the National Natural Science Foundation of China(Grant No.21908080)Natural Science Foundation of Jiangsu Province(Grant No.Bk20180884)。
文摘Non-biodegradable and toxic photocatalysts pose as secondary threats to the environmental security.In this work,non-toxic biocomposites were prepared using natural bamboo cellulose fibers(CF),polyvinyl alcohols(PVAs),BiVO_(4),and carbon dots(CDs)from biomaterials.Thereafter,their optical properties,chemical characterizations,and photocatalytic performances were evaluated.The novel BiVO_(4)(-)CF@CDs(-)PVA composites were prepared via the combined implementation of in situ and impregnation methods.The optical properties revealed that the CDs and fibers increased the range and intensity of light absorption.The PVAs were used as the shield and dispersant to enhance stability because they have numerous chemical groups.In view of the various possible paths of electron migration,the enhanced photocatalytic activity of BiVO_(4)(-)CF@CDs(-)PVA composites for tetracycline degradation was observed under visible light illumination.The origins of the structure,morphology,and optical mechanism in the enhancement of the photocatalytic ability of BiVO_(4)(-)CF@CDs(-)PVA composites were discussed and demonstrated.
基金supported by National Natural Science Foundation of China(No.1173086)National Key Technology R&D Program (Nos.2014A1302 and 2014AEOQO1)Natural Science Fund of Tianjin,China(No.14JCZDJC37200)
文摘Monosized nanoparticles of 57.3 nm were prepared by cationic emulsion polymerization using a polymerizable emulsifier DMHB.The adsorption of nanoparticles onto bamboo fibers was measured by conductometric titration.The results indicated that the adsorption capacity increased with increasing contact time until 120 min.The equilibrium data for nanoparticles adsorption onto bamboo fibers were well fitted to the Langmuir equation.Moreover,the monolayer adsorption capacity of nanoparticles in the concentration range(from 0.03 g/L to 0.6 g/L) studied,as calculated from Langmuir isotherm model at 25 C,was found to be 38.61 mg/g of fibers.The SEM images showed that the nanoparticles form a uniform monolayer on bamboo fiber surfaces.
基金the National Key Point Research and Invention Program of the Thirteenth(No.2017YFD0600802)for financial support.
文摘In order to improve the mechanical properties and toughness of phenolic foams,a reinforcement method using two kinds of bamboo fibers was optimized with respect to the fiber contents.The compressive and flexural properties,thermal stability,friability and morphology of the phenolic foam composites were studied.The mechanical properties of the pristine foam and composites were evaluated by measuring the compressive strength.The results showed that the greatest mechanical properties were achieved by incorporating 2.5wt%of the reinforcement,and the compressive and flexural strengths of the two composites increased by 26.21%and 24.35%,respectively,compared with that of the pristine foam.The results of thermogravimetric testing demonstrated that the addition of bamboo fiber imparted better thermal stability to the phenolic foam,which was mainly attributed to the higher initial thermal decomposition temperature of the bamboo fiber.However,the influences of both reinforcements on the thermal stability of the material were negligible.The incorporation of bamboo fiber decreased the friability of the phenolic foam.Furthermore,the reduction in friability of the foam composites with longer lengths were higher than that in foams with shorter bamboo fibers.Moreover,the morphology and cell sizes of the fiber-reinforced phenolic foams were analyzed by scanning electron microscopy,the results indicated strong bonding between the fibers and phenolic matrix,and the incorporation of the bamboo fibers into the foam resulted in increased cell size of the material.Finally,the thermal conductivity and flame resistance of the phenolic foams reinforced by the bamboo fibers were also measured.
基金the National Natural Science Foundation of China(No.31101085)the Scientific Research and Development Foundation for Start-up Projects of Zhejiang Agriculture and Forestry University (No.2034020044)
文摘The purpose of this study is to develop a standard methodology for measuring the surface free energy (SFE),and its component parts of bamboo fiber materials.The current methods was reviewed to determine the surface tension of natural fibers and the disadvantages of techniques used were discussed.Although numerous techniques have been employed to characterize surface tension of natural fibers,it seems that the credibility of results obtained may often be dubious.In this paper,critical surface tension estimates were obtained from computer aided machine vision based measurement.Data were then analyzed by the least squares method to estimate the components of SFE.SFE was estimated by least squares analysis and also by Schultz' method.By using the Fowkes method the polar and disperse fractions of the surface free energy of bamboo fiber materials can be obtained.Strictly speaking,this method is based on a combination of the knowledge of Fowkes theory. SFE is desirable when adhesion is required,and it avoids some of the limitations of existing studies which has been proposed.The calculation steps described in this research are only intended to explain the methods.The results show that the method that only determines SFE as a single parameter may be unable to differentiate adequately between bamboo fiber materials,but it is feasible and very efficient.In order to obtain the maximum performance from the computer aided machine vision based measurement instruments,this measurement should be recommended and kept available for reference.