In this paper, we discuss the existence and uniqueness of mild solutions of random impulsive abstract neutral partial differential equations in a real separable Hilbert space. The results are obtained by using Leray-S...In this paper, we discuss the existence and uniqueness of mild solutions of random impulsive abstract neutral partial differential equations in a real separable Hilbert space. The results are obtained by using Leray-Schauder Alternative and Banach Contraction Principle.Finally an example is given to illustrate our problem.展开更多
Aim To investigate the existence of positive solutions for impulsive neutral differential equations. Methods The Banach contraction principle was used to establish our results. Results and Conclusion The results of...Aim To investigate the existence of positive solutions for impulsive neutral differential equations. Methods The Banach contraction principle was used to establish our results. Results and Conclusion The results of the existence of positive solutions for impulsive neutral differential equations are obtained.展开更多
The aim of this paper is to study singular dynamics of solutions of Camassa-Holm equation. Based on the semigroup theory of linear operators and Banach contraction mapping principle, we prove the asymptotic stability ...The aim of this paper is to study singular dynamics of solutions of Camassa-Holm equation. Based on the semigroup theory of linear operators and Banach contraction mapping principle, we prove the asymptotic stability of the explicit singular solution of Camassa-Holm equation.展开更多
Let C be a nonempty bounded closed convex subset of a Banach space X, and T : C → C be uniformly L-Lipschitzian with L ≥ 1 and asymptotically pseudocontractive with a sequence {kn}(?)[1, ∞), limn→∞ kn = 1. Fix u ...Let C be a nonempty bounded closed convex subset of a Banach space X, and T : C → C be uniformly L-Lipschitzian with L ≥ 1 and asymptotically pseudocontractive with a sequence {kn}(?)[1, ∞), limn→∞ kn = 1. Fix u ∈ C. For each n ≥ 1, xn is a unique fixed point of the contraction Sn(x) = (1 - (tn)/(Lkn))u + (tn)/(Lkn)Tnx(?)x ∈ C, where {tn}(?)[0,1). Under suitable conditions, the strong convergence of the sequence{xn}to a fixed point of T is characterized.展开更多
In this research collection,we estimate the existence of the unique solution for the boundary value problem of nonlinear fractional q-difference equation having the given form c D^(ζ)_(q) v(t)−h(t,v(t))=0,0≤t≤1,α_...In this research collection,we estimate the existence of the unique solution for the boundary value problem of nonlinear fractional q-difference equation having the given form c D^(ζ)_(q) v(t)−h(t,v(t))=0,0≤t≤1,α_(1)v(0)+β_(1)D_(q)v(0)=v(η1),α_(2)v(1)−β_(2)D_(q)v(1)=v(η2),where 1<ζ≤2,(η1,η2)∈(0,1)^(2),α_(i),β_(i)∈R(i=1,2),h∈C([0,1]×R,R)and c Dζq represents the Caputo-type nonclassical q-derivative of orderζ.We use well-known principal of Banach contraction,and Leray–Schauder nonlinear alternative to vindicate the unique solution existence of the given problem.Regarding the applications,some examples are solved to justify our outcomes.展开更多
文摘In this paper, we discuss the existence and uniqueness of mild solutions of random impulsive abstract neutral partial differential equations in a real separable Hilbert space. The results are obtained by using Leray-Schauder Alternative and Banach Contraction Principle.Finally an example is given to illustrate our problem.
文摘Aim To investigate the existence of positive solutions for impulsive neutral differential equations. Methods The Banach contraction principle was used to establish our results. Results and Conclusion The results of the existence of positive solutions for impulsive neutral differential equations are obtained.
文摘The aim of this paper is to study singular dynamics of solutions of Camassa-Holm equation. Based on the semigroup theory of linear operators and Banach contraction mapping principle, we prove the asymptotic stability of the explicit singular solution of Camassa-Holm equation.
基金The Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, China, and The Dawn Program Fund in Shanghai.
文摘Let C be a nonempty bounded closed convex subset of a Banach space X, and T : C → C be uniformly L-Lipschitzian with L ≥ 1 and asymptotically pseudocontractive with a sequence {kn}(?)[1, ∞), limn→∞ kn = 1. Fix u ∈ C. For each n ≥ 1, xn is a unique fixed point of the contraction Sn(x) = (1 - (tn)/(Lkn))u + (tn)/(Lkn)Tnx(?)x ∈ C, where {tn}(?)[0,1). Under suitable conditions, the strong convergence of the sequence{xn}to a fixed point of T is characterized.
文摘In this research collection,we estimate the existence of the unique solution for the boundary value problem of nonlinear fractional q-difference equation having the given form c D^(ζ)_(q) v(t)−h(t,v(t))=0,0≤t≤1,α_(1)v(0)+β_(1)D_(q)v(0)=v(η1),α_(2)v(1)−β_(2)D_(q)v(1)=v(η2),where 1<ζ≤2,(η1,η2)∈(0,1)^(2),α_(i),β_(i)∈R(i=1,2),h∈C([0,1]×R,R)and c Dζq represents the Caputo-type nonclassical q-derivative of orderζ.We use well-known principal of Banach contraction,and Leray–Schauder nonlinear alternative to vindicate the unique solution existence of the given problem.Regarding the applications,some examples are solved to justify our outcomes.