期刊文献+
共找到201篇文章
< 1 2 11 >
每页显示 20 50 100
Band structures of strained kagome lattices
1
作者 徐露婷 杨帆 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期456-463,共8页
Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices... Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential.It is found that the Dirac points move with applied strain.Furthermore,the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction,forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction.Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain. 展开更多
关键词 kagome lattice STRAIN band structure engineering
下载PDF
Reanalysis of energy band structure in the type-II quantum wells
2
作者 李欣欣 邓震 +4 位作者 江洋 杜春花 贾海强 王文新 陈弘 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期75-78,共4页
Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures... Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems. 展开更多
关键词 energy band structure type-II quantum wells low-dimensional semiconductors
下载PDF
Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting 被引量:3
3
作者 Juncheng Wu Zhe‐Fan Wang +7 位作者 Taotao Guan Guoli Zhang Juan Zhang Jie Han Shengqin Guan Ning Wang Jianlong Wang Kaixi Li 《Carbon Energy》 SCIE CSCD 2023年第3期112-125,共14页
Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of... Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of TMPs.Herein,a novel method for synthesizing CoP nanoparticles encapsu-lated in a rich-defect carbon shell(CoP/DCS)is developed through the self-assembly of modified polycyclic aromatic molecules.The graft and removal of high-activity C-N bonds of aromatic molecules render the controllable design of crystallite defects of carbon shell.The density functional theory calculation indicates that the carbon defects with unpaired electrons could effectively tailor the band structure of CoP.Benefiting from the improved activity and corrosion resistance,the CoP/DCS delivers outstanding difunctional hydrogen evolution reaction(88 mV)and oxygen evolution reaction(251 mV)performances at 10 mA cm^(−2)current density.Furthermore,the coupled water electrolyzer with CoP/DCS as both the cathode and anode presents ultralow cell voltages of 1.49 V to achieve 10 mA cm^(−2)with long-time stability.This strategy to improve TMPs electrocatalyst with rich-DCS and heterogeneous structure will inspire the design of other transition metal compound electrocatalysts for water splitting. 展开更多
关键词 band structure bifunctional electrocatalysts CoP nanoparticles overall water splitting rich‐defect carbon
下载PDF
Band structure calculation of scalar waves in two-dimensional phononic crystals based on generalized multipole technique 被引量:4
4
作者 史志杰 汪越胜 张传增 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第9期1123-1144,共22页
A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed o... A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method. 展开更多
关键词 phononic crystal generalized multipole technique multiple multipolemethod multiple monopole method band structure eigenvalue problem
下载PDF
Synthesis,Crystal Structure and Band Structure of Sm_3In_5 被引量:5
5
作者 岳呈阳 雷晓武 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第3期384-389,共6页
A new intermetallic compound, Sm3In5, has been synthesized by solid-state reaction of the corresponding pure elements in a welded niobium tube at high temperature. Its crystal structure was established by single-cryst... A new intermetallic compound, Sm3In5, has been synthesized by solid-state reaction of the corresponding pure elements in a welded niobium tube at high temperature. Its crystal structure was established by single-crystal X-ray diffraction. Sm3In5 crystallizes in orthorhombic, space group Cmcm with a = 10.0137(8), b = 8.1211(7), c = 10.3858(8) A, V = 844.60(1) A^3, Z = 4, Mr = 1025.15, Dc = 8.062 g/cm^3, μ = 33.791 mm^-1, F(000) = 1724, the final R = 0.0346 and wR = 0.0775 for 533 observed reflections with I 〉 2σ(I). The structure of Sm3In5 belongs to the modified Pu3Pd5 type. It is isostructural with La3In5 and β-Y3In5, containing one-dimensional (1D) [In5] cluster chains along the c-axis, which are weakly interconnected via In-In bonds (3.345A) to form a three-dimensional (3D) structure. The samarium cations are located at the voids between the 1D [In5] cluster chains. Band structure calculations based on Density Function Theory (DFT) method indicate that Sm3In5 is metallic. 展开更多
关键词 INTERMETALLIC INDIDES crystal structure band structure calculation
下载PDF
Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications 被引量:5
6
作者 Qingdong Ou Xiaozhi Bao +5 位作者 Yinan Zhang Huaiyu Shao Guichuan Xing Xiangping Li Liyang Shao Qiaoliang Bao 《Nano Materials Science》 CAS 2019年第4期268-287,共20页
Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthe... Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies. 展开更多
关键词 band structure engineering Perovskite nanostructures Optoelectronic applications Doping Heterostructures
下载PDF
Synthesis, Crystal Structure and Band Structure of Eu_3Sn_5 with Arachno-type Zintl Anions 被引量:4
7
作者 雷晓武 毛江高 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第12期1403-1408,共6页
A new polar intermetallic compound, Eu3Sn5, has been synthesized by solid-state reaction of the corresponding pure elements in a stoicbiometric ratio in a welded tantalum tube at high temperature. Its crystal structur... A new polar intermetallic compound, Eu3Sn5, has been synthesized by solid-state reaction of the corresponding pure elements in a stoicbiometric ratio in a welded tantalum tube at high temperature. Its crystal structure was established by single-crystal X-ray diffraction. EuaSn5 crystallizes in orthorhombic, space group Cmcm with a = 10.466(11), b = 8,445(8), c = 10.662(12)/k, V = 942.4(17)A^3, Z = 4, Mr = 1049.33, De= 7.396 g/cm^3, ,μ = 32.578 mm^-1, F(000) = 1756, the final R = 0.0236 and wR = 0.0472 for 535 observed reflections with I 〉 2σ(I). Its structure belongs to the modified Pu3Pd5 type. It is isostructural with SraSn5 and Ba3Sn5, featuring [Sn5] square pyramidal clusters described as “arachno” according to the Wade-Mingos electron counting rules. The europium cations are located at the voids between the square pyramidal clusters. Results of the extended Htickel band structure calculations indicate that Eu3Sn5 is metallic. 展开更多
关键词 INTERMETALLIC STANNIDE crystal structure band structure
下载PDF
Band structures of transverse waves in nanoscale multilayered phononic crystals with nonlocal interface imperfections by using the radial basis function method 被引量:2
8
作者 Zhizhong Yan Chunqiu Wei Chuanzeng Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期415-428,共14页
A radial basis function collocation method based on the nonlocal elastic continuum theory is developed to compute the band structures of nanoscale multilayered phononic crystals. The effects of nonlocal imperfect inte... A radial basis function collocation method based on the nonlocal elastic continuum theory is developed to compute the band structures of nanoscale multilayered phononic crystals. The effects of nonlocal imperfect interfaces on band structures of transverse waves propagating obliquely or vertically in the system are studied. The correctness of the present method is verified by comparing the numerical results with those obtained by applying the transfer matrix method in the case of nonlocal perfect interface. Furthermore, the influences of the nanoscale size, the impedance ratio and the incident angle on the cut-off frequency and band structures are investigated and discussed in detail. Numerical results show that the nonlocal interface imperfections have significant effects on the band structures in the macroscopic and microscopic scale. 展开更多
关键词 Radial basis function Phononic crystal NANOSCALE band structure Nonlocal imperfect interface
下载PDF
Synthesis and Crystal and Band Structures of YbCu_6In_6 with 3D Framework 被引量:2
9
作者 雷晓武 岳呈阳 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第3期389-395,共7页
A new intermetallic compound,YbCu6In6,has been synthesized by solid-state reaction of the corresponding pure elements in a welded tantalum tube at high temperature.Its crystal structure was established by single-cryst... A new intermetallic compound,YbCu6In6,has been synthesized by solid-state reaction of the corresponding pure elements in a welded tantalum tube at high temperature.Its crystal structure was established by single-crystal X-ray diffraction.YbCu6In6 crystallizes in tetragonal space group I4/mmm with a = 9.2283(5),c = 5.4015(4),V = 460.00(5) 3,Z = 2,Mr = 1243.20,Dc = 8.976 g/cm3,μ = 38.243 mm-1,F(000) = 1076,and the final R = 0.0258 and wR = 0.0602 for 173 observed reflections with I 〉 2σ(I).The structure of YbCu6In6 belongs to the ThMn12 type.It is isostructural with RECu6In6(RE = Y,Ce,Pr,Nd,Gd,Tb,Dy),containing one-dimensional(1D) [Cu10In6] cluster chain along the c axis,which is interconnected via sharing the Cu(1) atoms to form a three-dimensional(3D) [Cu6In6] framework with Yb atoms encapsulated in the 1D tunnels along the c axis.Band structure calculations based on Density Functional Theory(DFT) method indicate that YbCu6In6 is metallic. 展开更多
关键词 INTERMETALLIC indides crystal structure band structure calculation
下载PDF
Study on Band Structure of YbB_6 and Analysis of Its Optical Conductivity Spectrum 被引量:1
10
作者 姜骏 卞江 黎乐民 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第6期654-664,共11页
The electronic structure of YbB6 crystal was studied by means of density functional (GGA + U) method. The calculations were performed by FLAPW method. The high accurate band structure was achieved. The correlation ... The electronic structure of YbB6 crystal was studied by means of density functional (GGA + U) method. The calculations were performed by FLAPW method. The high accurate band structure was achieved. The correlation between the feature of the band structure and the Yb-B6 bonding in YbB6 was analyzed. On this basis, some optical constants of YbB6 such as reflectivity, dielectric function, optical conductivity, and energy-loss function were calculated. The results are in good agreement with the experiments. The real part of the optical conductivity spectrum and the energy-loss function spectrum were analyzed in detail. The assignments of the spectra were carried out to correlate the spectral peaks with the interband electronic transitions, which justify the reasonable part of previous empirical assignments and renew the missed or incorrect ones. 展开更多
关键词 YbB6 band structure optical conductivity energy-loss function spectrum assignment rare earths
下载PDF
The complex band structure for armchair graphene nanoribbons 被引量:1
11
作者 张留军 夏同生 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期548-554,共7页
Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well wi... Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M- 1. The band gap is almost unchanged for N =3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes. 展开更多
关键词 armchair graphene nanoribbons complex band structure edge bond relaxation third nearest neighbour interaction
下载PDF
Synthesis,Crystal Structure and Band Structure of Tb_3Co_4Sn_(13) 被引量:1
12
作者 雷晓武 岳呈阳 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第6期805-810,共6页
A new intermetallic compound,Tb3Co4Sn13,has been synthesized by solid-state reaction of the corresponding pure elements in a welded tantalum tube at high temperature.Its crystal structure was established by single-cry... A new intermetallic compound,Tb3Co4Sn13,has been synthesized by solid-state reaction of the corresponding pure elements in a welded tantalum tube at high temperature.Its crystal structure was established by single-crystal X-ray diffraction.Tb3Co4Sn13 crystallizes in cubic,space group Pm3n(No.223) with a = 9.5072(2) ,V = 859.33(3) 3,Z = 2,Mr = 2255.45,Dc = 8.717 g/cm3,μ = 34.369 mm-1,F(000) = 1906,and the final R = 0.0140 and wR = 0.0312 for 199 observed reflections with I〉 2σ(I).The structure of Tb3Co4Sn13 belongs to the Yb3Rh4Sn13 type.It is isostructural with RE3Co4Sn13(RE = La,Ce),featuring a 3D [Co4Sn12] framework based on [CoSn6] trigonal prisms.The [CoSn6] trigonal prisms are interconnected via corner-sharing and Sn-Sn bonds to form a 3D [Co4Sn12] framework.The other Sn and Tb atoms are located in the spacers of the 3D framework.Band structure calculations indicate that Tb3Co4Sn13 is metallic. 展开更多
关键词 INTERMETALLIC STANNIDE crystal structure band structure calculation
下载PDF
Photonic band structures of quadrangular multiconnected networks 被引量:1
13
作者 宋欢欢 杨湘波 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期313-321,共9页
By means of the network equation and generalized dimensionless Floquet-Bloch theorem, this paper investigates the properties of the band number and width for quadrangular multiconnected networks (QMNs) with a differ... By means of the network equation and generalized dimensionless Floquet-Bloch theorem, this paper investigates the properties of the band number and width for quadrangular multiconnected networks (QMNs) with a different number of connected waveguide segments (NCWSs) and various matching ratio of waveguide length (MRWL). It is found that all photonic bands are wide bands when the MRWL is integer. If the integer attribute of MRWL is broken, narrow bands will be created from the wide band near the centre of band structure. For two-segment-connected networks and three-segment-connected networks, it obtains a series of formulae of the band number and width. On the other hand, it proposes a so-called concept of two-segment-connected quantum subsystem and uses it to discuss the complexity of the band structures of QMNs. Based on these formulae, one can dominate the number, width and position of photonic bands within designed frequencies by adjusting the NCWS and MRWL. There would be potential applications for designing optical switches, optical narrow-band filters, dense wavelength-division-multiplexing devices and other correlative waveguide network devices. 展开更多
关键词 multiconnected network WAVEGUIDE photonic band structure
下载PDF
Band Structures and Two-photon Absorption of ZnGeP_2 and AgGaS_2 Crystals 被引量:1
14
作者 程文旦 谢知 +3 位作者 吴东升 黄淑萍 王金云 张浩 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第6期950-956,共7页
Band structure and bonding properties have been investigated in terms of periodic density functional theory(DFT) method,and two-photon absorption(TPA) spectra have been simulated by two-band model for ZnGeP2 and A... Band structure and bonding properties have been investigated in terms of periodic density functional theory(DFT) method,and two-photon absorption(TPA) spectra have been simulated by two-band model for ZnGeP2 and AgGaS2 crystals.It has been predicted that the AgGaS2 crystal has a wider window of nonlinear transmission,and the laser pumping energy larger than 1.02 and 1.35 eV will lead to deleterious TPA of higher nonlinear effect for ZnGeP2 and AgGaS2 crystals,respectively.Electron origin of TPA for them is also discussed. 展开更多
关键词 DFT band structure TPA electron transition
下载PDF
Energy Band Structure of Alq_3/TCAQ Heterostructure Complex Film Determined by Surface Photovoltage Spectroscopy(SPS)
15
作者 CAO Ya-an, SONG Qing, MENG Qing-ju, CAO Chang-sheng CHEN Chun-hai, BAI Yu-bai, LI Tie-jin and YAO Jian-nian (Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100101, P. R. China Department of Chemistry, Jilin Uni 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2000年第4期328-333,共6页
8-Hydroxyquinoling aluminum (Alq3) and 11, 11, 12, 12-tetracyano-9, 10-anthraquino dimethane(TCAQ) monolayer films and their heterostructure complex films were prepared by a vacuum deposition method. By means of surfa... 8-Hydroxyquinoling aluminum (Alq3) and 11, 11, 12, 12-tetracyano-9, 10-anthraquino dimethane(TCAQ) monolayer films and their heterostructure complex films were prepared by a vacuum deposition method. By means of surface photovoltage spectroscopy (SPS) and electric field-induced surface photovoltage spectroscopy (EFISPS), the band gaps of TCAQ and Alq3 monolayer films and the properties of the Alq3/TCAQ bilayer film were investigated. By analysing the mechanism and the results of the SPS and the EFISPS, a reasonable energy band structure of the Alq3/TCAQ complex film was roughly determined. 展开更多
关键词 Alq_3 TCAQ Complex film SPS Energy band structure
下载PDF
Band Structure and Optical Gain of InGaAs/GaAsBi Type-Ⅱ Quantum Wells Modeled by the k·p Model
16
作者 王畅 潘文武 +1 位作者 Konstantin Kolokolov 王庶民 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第5期133-136,共4页
Optical gains of type-Ⅱ In Ga As/Ga As Bi quantum wells(QWs) with W, N, and M shapes are analyzed theoretically for near-infrared laser applications. The bandgap and wave functions are calculated using the self-con... Optical gains of type-Ⅱ In Ga As/Ga As Bi quantum wells(QWs) with W, N, and M shapes are analyzed theoretically for near-infrared laser applications. The bandgap and wave functions are calculated using the self-consistent k·p Hamiltonian, taking into account valence band mixing and the strain effect. Our calculations show that the M-shaped type-Ⅱ QWs are a promising structure for making 1.3 um lasers at room temperature because they can easily be used to obtain 1.3 um for photoluminescence with a proper thickness and have large wave-function overlap for high optical gain. 展开更多
关键词 As BI In Ga band structure and Optical Gain of InGaAs/GaAsBi Type Quantum Wells Modeled by the k p Model
下载PDF
Synthesis,Crystal and Band Structures,and Optical Properties of Mercury Pnictide Halide Hg_(19)As_(10)Br_(18)
17
作者 邹建平 张龙珠 +2 位作者 曾桂生 罗旭彪 彭强 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第12期1827-1832,共6页
A mercury pnictide halide semiconductor Hg19As10Br18(1) has been prepared by the solid-state reaction and structurally characterized by single-crystal X-ray diffraction analysis.Compound 1 crystallizes in triclinic,... A mercury pnictide halide semiconductor Hg19As10Br18(1) has been prepared by the solid-state reaction and structurally characterized by single-crystal X-ray diffraction analysis.Compound 1 crystallizes in triclinic,space group P with a = 11.262(4),b = 11.352(4),c = 12.309(5) ,α = 105.724(2),β = 105.788(4),γ = 109.0780(10)° and V = 1314.3(8) 3.The structure of 1 is composed of parallel perovskite-like layers bridged by the linearly coordinated Br atoms to form a three-dimensional framework.The optical properties were investigated in terms of the diffuse reflectance spectrum.The electronic band structure along with density of states(DOS) calculated by DFT method indicates that compound 1 is a semiconductor with an indirect band gap,and that the optical absorption is mainly originated from the charge transitions from Br-4p and As-4p to the Hg-6s states. 展开更多
关键词 band structure density functional calculations pnictide halides semiconductor solid-state reaction
下载PDF
Synthesis, Crystal Structure and Band Structure of EuMg_6Sn_(3.67)
18
作者 岳呈阳 周芳霞 +2 位作者 王明锋 张慧苹 雷晓武 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2013年第4期495-500,共6页
EuMg6Sn3.67 has been synthesized by reacting the mixture of the corresponding pure elements at high temperature, and structurally characterized by single-crystal X-ray diffraction study. EuMg6Sn3.67 crystallizes in he... EuMg6Sn3.67 has been synthesized by reacting the mixture of the corresponding pure elements at high temperature, and structurally characterized by single-crystal X-ray diffraction study. EuMg6Sn3.67 crystallizes in hexagonal space group P63/m (No. 176) with a = 11.7259(4), c = 4.5507(2) A, V= 541.88(4)A3 Z = 2, Mr = 734.60, Dc= 4.502 g/cm3, μ = 14.348 mm-1, F(000) = 638, the final R = 0.0128 and wR = 0.0378 for 464 observed reflections with 1 〉 2σ-(1). EuMg6Sn3.67 is closely related to the Ba2Mg2GeT.33 structure type and features a three-dimensional [Mg6Sn3.67] framework with one-dimensional hexagonal tunnels along the c-axis occupied by the Eu atoms. Electronic structure calculation indicates that the title compound is metallic. 展开更多
关键词 INTERMETALLIC STANNIDE crystal structure band structure calculation
下载PDF
Energy band structure in optical of spin-1 condensates lattices
19
作者 Li Zhi Zhang Ai-Xia Ma Juan Xue Ju-Kui 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期68-73,共6页
The energy band structure of spin-1 condensates with repulsive spimindependent and either ferromagnetic or antiferromagnetic spin-dependent interactions in one-dimensional (1D) periodic optical lattices is discussed... The energy band structure of spin-1 condensates with repulsive spimindependent and either ferromagnetic or antiferromagnetic spin-dependent interactions in one-dimensional (1D) periodic optical lattices is discussed. Within the two-mode approximation, Bloch bands of spin-1 condensates are presented. The results show that the Bloch bands exhibit a complex structure as the atom density of mF = 0 hyperfine state increases: bands splitting, reversion, intersection and loop structure are excited subsequently. The complex band structure should be related to the tunneling and spin-mixing dynamics. 展开更多
关键词 spiral condensates optical lattices band structure
下载PDF
Growth,Band Structure and Optical Properties of LiSrBO_3 Crystal
20
作者 龚亚京 吴东升 +4 位作者 程文旦 张浩 陈达贵 张永春 阚子规 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第10期1165-1170,共6页
The bulk crystal of LiSrBO3 (8.39 g) with a size of 21mm × 20mm × 15mm was grown by high temperature solution growth method. The relationship between growth habit and crystal structure was discussed. The t... The bulk crystal of LiSrBO3 (8.39 g) with a size of 21mm × 20mm × 15mm was grown by high temperature solution growth method. The relationship between growth habit and crystal structure was discussed. The transmission spectrum shows an UV absorption edge at about 300 nm. The melting temperature of this crystal was detemained to be 942 ℃ by DTA-TG measurement. The band structure of the LiSrBO3 crystal was studied by means of the first principle method. An indirect band gap was found to be about 4.0 eV, and a low dielectric constant was estimated to be about 1.9 in terms of theoretical results. 展开更多
关键词 high temperature SPECTRUM band structure
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部