A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed for wireless universal serial-bus (WUSB). The antenna is composed of a U-shaped line radi...A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed for wireless universal serial-bus (WUSB). The antenna is composed of a U-shaped line radiator and a small strip bar and is partially grounded, so that the measured impedance bandwidth of the antenna is about 7. 88 GHz covering 3. 12 to 11 GHz with VSWR below 2, and the expected band rejection of 5.06 to 5. 89 GHz is also obtained. The characteristics of the proposed antenna are analyzed, and the geometric parameters for optimal performance are investigated in detail. A relatively stable, quasi-omnidirectional and quasi-symmetrical radiation pattern is also found. The proposed band-notched UWB antenna requires no external filters to avoid interference with other systems, and thus, greatly simplifies the system design of an ultra wideband WUSB communication system.展开更多
A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwi...A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwidth is broadened. A small strip bar is loaded on each arm of the similar U-shaped radiator. The impedance bandwidth of the antenna overlap with IEEE 802.11a is rejected consequently. The geometry parameters of the antenna are investigated and optimized with HFSS. The measured bandwidth of the proposed antenna occupies about 7.89 GHz covering from 3.05 GHz to 10.94 GHz with expected notched band from 4.96 GHz to 5.98 GHz. A quasi-omnidirectional and quasi-symmetrical radiation pattern in the whole band is also obtained. As a result, a UWB wireless communication system can be simplified with the band-notched UWB antenna presented.展开更多
This paper proposes an antenna design concept to achieve a multi-reconfigurable band-notch antenna by using a set of microswitches. The proposed idea was proved by the design of the coplanar waveguide(CPW)-fed slot an...This paper proposes an antenna design concept to achieve a multi-reconfigurable band-notch antenna by using a set of microswitches. The proposed idea was proved by the design of the coplanar waveguide(CPW)-fed slot antenna. The sample design gives a wideband antenna the impedance bandwidth of which covers the frequency ranged from 1.9 GHz to 6.55 GHz.The antenna could be configured to work either in single-band mode or in one of the defined dual-band modes.展开更多
A simple and compact microstrip-fed Ultra WideBand(UWB) printed monopole antenna with band-notched characteristic is proposed in this paper.The antenna is composed of a square ring with a small strip bar,so that the a...A simple and compact microstrip-fed Ultra WideBand(UWB) printed monopole antenna with band-notched characteristic is proposed in this paper.The antenna is composed of a square ring with a small strip bar,so that the antenna occupies about 7.69 GHz bandwidth covering 3.11~10.8 GHz with expected band rejection from 5.12 GHz to 5.87 GHz.A quasi-omnidirectional and quasi-sym-metrical radiation pattern is also obtained.This kind of band-notched UWB antenna requires no ex-ternal filters and thus greatly simplifies the system design of UWB wireless communication.展开更多
The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB mon...The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB monopole is used to obtain the band-notched characteristic for 5 GHz wireless local area network (WLAN) band. The measured results show that voltage standing wave ration (VSWR) less than 2 covers 3.1-10.6 GHz operating band and VSWR more than 2 is within 5.150-5.825 GHz notched one with the highest value of 5.6. Agreement among the calculated, HFSS simulated and measured results validates the effiectiveness of this MGA-FDTD method, which is efficient for UWB antennas design.展开更多
An ultra-wideband antenna with controllable band-notched is presented. Two semi-ellipses with different radiuses are subtracted to result in the main patch. By varying inner and outer radiuses, much more enhancement i...An ultra-wideband antenna with controllable band-notched is presented. Two semi-ellipses with different radiuses are subtracted to result in the main patch. By varying inner and outer radiuses, much more enhancement in bandwidth occurred. A U-shaped slot is used to make band-stop performance. Measured S11 is ≤-10 dB over 2.3 - 5 GHz and 6.1 - 15.1 GHz.展开更多
A compact antenna with extended band-notched characteristics was designed for ultra wideband (UWB) communications. The antenna consists of a crescent-shaped elliptical patch with a T-shaped stub and a square ground ...A compact antenna with extended band-notched characteristics was designed for ultra wideband (UWB) communications. The antenna consists of a crescent-shaped elliptical patch with a T-shaped stub and a square ground board plane. The antenna is easily integrated with radio-frequency/microwave circuits to reduce the manufacturing cost. The central frequency and the notch bandwidth can be adjusted by changing the size of the T-shaped stub. Simulations verify the design characteristics. Measurements show that the antenna produces the UWB working bandwidth.展开更多
In this letter, a simple monopole antenna with variable band-notched characteristic for ultra wide band (UWB) function is proposed. Two L-shaped quarter-waveguide resonators coupled to the ground plane with two shorti...In this letter, a simple monopole antenna with variable band-notched characteristic for ultra wide band (UWB) function is proposed. Two L-shaped quarter-waveguide resonators coupled to the ground plane with two shorting tracks at the sides of the antenna are used to generate stop-band performance around 5.5 GHz (WLAN). The proposed antenna is fabricated on the substrate FR4 (relative permittivity of 4.7) and has a compact size of 16 × 28.5 × 1.6 mm. The designed antenna has a good impedance matching in 3.1 - 11.4 GHz frequency range with VSWR < 2, except the band 5 - 5.85 GHz.展开更多
This paper presents three compact ultra-wideband(UWB)antennas fed by coplanar waveguide(CPW).The proposed antennas consist of a planar circular patch monopole UWB antenna and multiple etched slots on the feed line.Sim...This paper presents three compact ultra-wideband(UWB)antennas fed by coplanar waveguide(CPW).The proposed antennas consist of a planar circular patch monopole UWB antenna and multiple etched slots on the feed line.Simulation by Ansoft high frequency structure simulator(HFSS)10.0 shows that the in-band impedances are quite stable and satisfactory.Rejected narrow frequency bands are further obtained within the wideband width by inserting U-shaped slots into the fed line of the antennas.The antennas have a dimension of 50mm by 40mm by 1.5mm.The simulation and measurement results show that the proposed antennas have stable directional radiation patterns,very low profile and low fabrication cost,which are suitable for the UWB system.展开更多
Ultra-wideband (UWB) is one of the recent topics that received a great concern from academia and industry. However, UWB found many difficulties to be standardized due to the overlay working that made UWB an important ...Ultra-wideband (UWB) is one of the recent topics that received a great concern from academia and industry. However, UWB found many difficulties to be standardized due to the overlay working that made UWB an important potential interference source to many licensed and unlicensed spectrum throughout the band 3.1 to 10.6 GHz. This paper demonstrates the design of integrated triple band notched for UWB Microstrip antenna. We simulated UWB short range systems which require low power and these are built using inexpensive digital components. We proposed a compact triple band notched CPW (Co-planar Waveguide) fed Micro strip Antenna (MSA) for UWB. This band-notched antenna has rejection characteristics at 3.2 GHz (for Wi-MAX band 3.16 to 3.32 GHz), at 5.5 GHz (for WLAN 2 band—5.3 to 5.72 GHz) and at 7.9 GHz (for ITU band 7.72 GHz to 8.13 GHz). The simulation was done using IE3D simulator.展开更多
This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief histo...This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief history of the ultrawideband antennas is first provided. Several types of planar antennas for UWB systems with band-notched designs are reviewed. Special SWB planar antenna designs with the bandwidth ratio greater than 10:1 including metal-plate and printed monopole antennas and tapered slot antennas are presented and compared.展开更多
This paper introduces a compact dual notched UWB antenna with an independently controllable WLAN notched band integrated with fixed WiMAX band-notch.The proposed antenna utilizes a slot resonator placed in the main ra...This paper introduces a compact dual notched UWB antenna with an independently controllable WLAN notched band integrated with fixed WiMAX band-notch.The proposed antenna utilizes a slot resonator placed in the main radiator of the antenna for fixed WiMAX band notch,while an inverted L-shaped resonator in the partial ground plane for achieving frequency agility within WLAN notched band.The inverted L-shaped resonator is also loaded with fixed and variable capacitors to control and adjust the WLAN notch.The WLAN notched band can be controlled independently with a wide range of tunability without disturbing the WiMAX bandnotch performance.Step by step design approach of the proposed antenna is discussed and the corresponding mathematical analysis of the proposed resonators are provided in both cases.Simulation of the proposed antenna is performed utilizing commercially available 3D-EM simulator,Ansoft High Frequency Structure Simulator(HFSS).The proposed antenna has high selectivity with experimental validation in terms of reflection coefficient,radiation characteristics,antenna gain,and percentage radiation efficiency.The corresponding measured frequency response of the input port corresponds quite well with the calculations and simulations in both cases.The proposed antenna is advantageous and can adjust according to the device requirements and be one of the attractive candidates for overlay cognitive radio UWB applications and URLLC service in 5G tactile internet.The proposed multifunctional antenna can also be used for wireless vital signs monitoring,sensing applications,and microwave imaging techniques.展开更多
文摘A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed for wireless universal serial-bus (WUSB). The antenna is composed of a U-shaped line radiator and a small strip bar and is partially grounded, so that the measured impedance bandwidth of the antenna is about 7. 88 GHz covering 3. 12 to 11 GHz with VSWR below 2, and the expected band rejection of 5.06 to 5. 89 GHz is also obtained. The characteristics of the proposed antenna are analyzed, and the geometric parameters for optimal performance are investigated in detail. A relatively stable, quasi-omnidirectional and quasi-symmetrical radiation pattern is also found. The proposed band-notched UWB antenna requires no external filters to avoid interference with other systems, and thus, greatly simplifies the system design of an ultra wideband WUSB communication system.
文摘A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwidth is broadened. A small strip bar is loaded on each arm of the similar U-shaped radiator. The impedance bandwidth of the antenna overlap with IEEE 802.11a is rejected consequently. The geometry parameters of the antenna are investigated and optimized with HFSS. The measured bandwidth of the proposed antenna occupies about 7.89 GHz covering from 3.05 GHz to 10.94 GHz with expected notched band from 4.96 GHz to 5.98 GHz. A quasi-omnidirectional and quasi-symmetrical radiation pattern in the whole band is also obtained. As a result, a UWB wireless communication system can be simplified with the band-notched UWB antenna presented.
文摘This paper proposes an antenna design concept to achieve a multi-reconfigurable band-notch antenna by using a set of microswitches. The proposed idea was proved by the design of the coplanar waveguide(CPW)-fed slot antenna. The sample design gives a wideband antenna the impedance bandwidth of which covers the frequency ranged from 1.9 GHz to 6.55 GHz.The antenna could be configured to work either in single-band mode or in one of the defined dual-band modes.
文摘A simple and compact microstrip-fed Ultra WideBand(UWB) printed monopole antenna with band-notched characteristic is proposed in this paper.The antenna is composed of a square ring with a small strip bar,so that the antenna occupies about 7.69 GHz bandwidth covering 3.11~10.8 GHz with expected band rejection from 5.12 GHz to 5.87 GHz.A quasi-omnidirectional and quasi-sym-metrical radiation pattern is also obtained.This kind of band-notched UWB antenna requires no ex-ternal filters and thus greatly simplifies the system design of UWB wireless communication.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB monopole is used to obtain the band-notched characteristic for 5 GHz wireless local area network (WLAN) band. The measured results show that voltage standing wave ration (VSWR) less than 2 covers 3.1-10.6 GHz operating band and VSWR more than 2 is within 5.150-5.825 GHz notched one with the highest value of 5.6. Agreement among the calculated, HFSS simulated and measured results validates the effiectiveness of this MGA-FDTD method, which is efficient for UWB antennas design.
文摘An ultra-wideband antenna with controllable band-notched is presented. Two semi-ellipses with different radiuses are subtracted to result in the main patch. By varying inner and outer radiuses, much more enhancement in bandwidth occurred. A U-shaped slot is used to make band-stop performance. Measured S11 is ≤-10 dB over 2.3 - 5 GHz and 6.1 - 15.1 GHz.
基金Supported by the National Key Basic Research and Development (973) Program of China (No. 2007CB310600)the National High-Tech Research and Development (863) Program of China (No. 2007AA01Z2b3)
文摘A compact antenna with extended band-notched characteristics was designed for ultra wideband (UWB) communications. The antenna consists of a crescent-shaped elliptical patch with a T-shaped stub and a square ground board plane. The antenna is easily integrated with radio-frequency/microwave circuits to reduce the manufacturing cost. The central frequency and the notch bandwidth can be adjusted by changing the size of the T-shaped stub. Simulations verify the design characteristics. Measurements show that the antenna produces the UWB working bandwidth.
文摘In this letter, a simple monopole antenna with variable band-notched characteristic for ultra wide band (UWB) function is proposed. Two L-shaped quarter-waveguide resonators coupled to the ground plane with two shorting tracks at the sides of the antenna are used to generate stop-band performance around 5.5 GHz (WLAN). The proposed antenna is fabricated on the substrate FR4 (relative permittivity of 4.7) and has a compact size of 16 × 28.5 × 1.6 mm. The designed antenna has a good impedance matching in 3.1 - 11.4 GHz frequency range with VSWR < 2, except the band 5 - 5.85 GHz.
基金Supported by the National High Technology Research and Development Programme of China(No.2007AA01Z261,2009AA01Z228)the National Science and Technology Major Special Project(No.2009ZX03007-001-01)
文摘This paper presents three compact ultra-wideband(UWB)antennas fed by coplanar waveguide(CPW).The proposed antennas consist of a planar circular patch monopole UWB antenna and multiple etched slots on the feed line.Simulation by Ansoft high frequency structure simulator(HFSS)10.0 shows that the in-band impedances are quite stable and satisfactory.Rejected narrow frequency bands are further obtained within the wideband width by inserting U-shaped slots into the fed line of the antennas.The antennas have a dimension of 50mm by 40mm by 1.5mm.The simulation and measurement results show that the proposed antennas have stable directional radiation patterns,very low profile and low fabrication cost,which are suitable for the UWB system.
文摘Ultra-wideband (UWB) is one of the recent topics that received a great concern from academia and industry. However, UWB found many difficulties to be standardized due to the overlay working that made UWB an important potential interference source to many licensed and unlicensed spectrum throughout the band 3.1 to 10.6 GHz. This paper demonstrates the design of integrated triple band notched for UWB Microstrip antenna. We simulated UWB short range systems which require low power and these are built using inexpensive digital components. We proposed a compact triple band notched CPW (Co-planar Waveguide) fed Micro strip Antenna (MSA) for UWB. This band-notched antenna has rejection characteristics at 3.2 GHz (for Wi-MAX band 3.16 to 3.32 GHz), at 5.5 GHz (for WLAN 2 band—5.3 to 5.72 GHz) and at 7.9 GHz (for ITU band 7.72 GHz to 8.13 GHz). The simulation was done using IE3D simulator.
基金Project supported by the National Natural Science Foundation of China (Grant No.60571053), and the Shanghai Leading Academic Discipline Project (Grant No.T0102).
文摘This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief history of the ultrawideband antennas is first provided. Several types of planar antennas for UWB systems with band-notched designs are reviewed. Special SWB planar antenna designs with the bandwidth ratio greater than 10:1 including metal-plate and printed monopole antennas and tapered slot antennas are presented and compared.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2019R1A4A1023746,No.2019R1F1A1060799)the Strengthening R&D Capability Program of Sejong University.
文摘This paper introduces a compact dual notched UWB antenna with an independently controllable WLAN notched band integrated with fixed WiMAX band-notch.The proposed antenna utilizes a slot resonator placed in the main radiator of the antenna for fixed WiMAX band notch,while an inverted L-shaped resonator in the partial ground plane for achieving frequency agility within WLAN notched band.The inverted L-shaped resonator is also loaded with fixed and variable capacitors to control and adjust the WLAN notch.The WLAN notched band can be controlled independently with a wide range of tunability without disturbing the WiMAX bandnotch performance.Step by step design approach of the proposed antenna is discussed and the corresponding mathematical analysis of the proposed resonators are provided in both cases.Simulation of the proposed antenna is performed utilizing commercially available 3D-EM simulator,Ansoft High Frequency Structure Simulator(HFSS).The proposed antenna has high selectivity with experimental validation in terms of reflection coefficient,radiation characteristics,antenna gain,and percentage radiation efficiency.The corresponding measured frequency response of the input port corresponds quite well with the calculations and simulations in both cases.The proposed antenna is advantageous and can adjust according to the device requirements and be one of the attractive candidates for overlay cognitive radio UWB applications and URLLC service in 5G tactile internet.The proposed multifunctional antenna can also be used for wireless vital signs monitoring,sensing applications,and microwave imaging techniques.