The discovery of the Gouap banded iron formations(BIFs)-hosted iron mineralization in the northwestern of the Nyong Group(Ntem Complex)in southwestern Cameroon provides unique insights into the geology of this region....The discovery of the Gouap banded iron formations(BIFs)-hosted iron mineralization in the northwestern of the Nyong Group(Ntem Complex)in southwestern Cameroon provides unique insights into the geology of this region.In this contribution,we firstly report detailed study of geochemistry,isotopic and geochronology of well preserved samples of the Gouap BIFs collected from diamond drillcores.The Gouap BIFs consist mainly of amphibole BIFs and amphibole-pyrite BIFs characterized by dominant Fe_(2)O_(3)+SiO_(2)contents and variable contents of CaO,MgO and SO_(3),consistent with the presence of amphibole,chlorite,epidote and pyrite,formed during amphibolite facies metamorphism and overprinted hydrothermal event.The amphibole–pyrite BIFs are typically enriched in trace and rare earth elements(REE)compared to the amphibole BIFs,suggesting the influence of detrital materials as well as secondary hydrothermal alteration.The Post Archean Australian Shale(PAAS)-normalized REE–Y profiles of the Gouap BIFs display positive La,Eu anomalies,weak negative Ce anomalies,indicating a mixture of low-temperature hydrothermal fluids and relatively oxic conditions probably under relative shallow seawater.We present here the first isotopic data of BIFs within the Ntem Complex.Theδ^(30)Si_(NBS28)values of the quartz from the Gouap BIFs vary from-1.5‰to-0.3‰and from-0.8‰to-0.9‰for the amphibole BIFs and amphibole–pyrite BIFs,respectively.The quartz hasδ^(18)OV-SMOW values of 6.8‰–9.5‰(amphibole BIFs)and 9.2‰–10.6‰(amphibole–pyrite BIFs).The magnetite from the Gouap BIFs showsδ^(18)O values ranging from-3.5‰to-1.8‰and from-3‰to-1.7‰for the amphibole BIFs and amphibole–pyrite BIFs,respectively.Moreover,the pyrite grains in the amphibole–pyrite BIFs displayδ34S values of 1.1‰–1.8‰.All isotopic data of the Gouap BIFs confirm that they might have precipitated from low-temperature hydrothermal fluids with detrital input distant from the volcanic activity.According to their geochemical and isotopic characteristics,we propose that the Gouap BIFs belong to the Superior type.In situ U–Pb zircon dating of BIFs was conducted to assess the BIF depositional age based on strong evidence of zircon in thin section.The Gouap BIFs were probably deposited at 2422±50 Ma in a region where sediments extended from continental shelf to deep-water environments along craton margins like the Caue Formation of the Minas Supergroup,Brazil.The studied BIFs have experienced regional hydrothermal activity and metamorphism at 2089±8.3 Ma during the Eburnean–Transamazonian orogeny.These findings suggest a physical continuity between the protocratonic masses of both Sao Francisco and Congo continents in the Rhyacian Period.展开更多
Banded Iron Formations(BIFs) are chemical sediments, ubiquitously distributed in the Precambrian supracrustal belts; thus their trace element compositions are helpful for deciphering geochemical evolution on the Ear...Banded Iron Formations(BIFs) are chemical sediments, ubiquitously distributed in the Precambrian supracrustal belts; thus their trace element compositions are helpful for deciphering geochemical evolution on the Earth through time. However, it is necessary to elucidate factors controlling the whole-rock compositions in order to decode the ancient seawater compositions because their compositions are highly variable. We analyzed major and trace element contents of the BIFs in the 3.8-3.7 Ga Isua supracrustal belt(ISB), southern West Greenland. The BIFs are petrographically classified into four types:Black-,Gray-, Green-and White-types, respectively. The Green-type BIFs contain more amphiboles, and are significantly enriched in Co, Ni, Cu, Zn, Y, heavy rare earth element(HREE) and U contents. However,their bulk compositions are not suitable for estimate of seawater composition because the enrichment was caused by secondary mobility of metamorphic Mg, Ca and Si-rich fluid, involvement of carbonate minerals and silicate minerals of olivine and pyroxene and/or later silicification or contamination of volcanic and clastic materials. The White-type BIFs are predominant in quartz, and have lower transition element and REE contents. The Gray-type BIFs contain both quartz and magnetite. The Black-type BIFs are dominated by magnetite, and contain moderate to high transition element and REE contents. But,positive correlations of V, Ni, Zn and U contents with Zr contents suggest that involvement of detrital,volcanic and exhalative materials influences on their contents. The evidence for significant influence of the materials on the transition element contents such as Ni in the BIFs indicates the transition element contents in the Archean ocean were much lower than previously estimated. We reconstructed secular variations of V,Co, Zn and U contents of BIFs through time, which show Ni and Co contents decreased whereas V, Zn and U contents increased through time. Especially, the Ni and Co contents drastically decreased in the Mesoarchean rather than around the Great Oxidation Event. On the other hand, the V,Zn and U contents progressively increased from the Mesoarchean to the Proterozoic. Stratigraphical trends of the BIFs show increase in Y/Ho ratios and decrease in positive Eu anomaly upwards, respectively. The stratigraphic changes indicate that a ratio of hydrothermal fluid to seawater component gradually decrease through the deposition, and support the Eoarchean plate tectonics, analogous to the their stratigraphic variations of seafloor metalliferous sediments at present and in the Mesoarchean.展开更多
Objective Banded Iron Formations (BIFs) are ferruginous chemical sedimentary rocks that precipitated throughout the Precambrain, which constitute the most important iron resources in the world. The majority of BIFs...Objective Banded Iron Formations (BIFs) are ferruginous chemical sedimentary rocks that precipitated throughout the Precambrain, which constitute the most important iron resources in the world. The majority of BIFs were developed in the Neoarchean and early Paleoproterozoic periods (3.2-1.8 Ga), which are well known and have been mined for centuries. Another type of the BIFs which was formed in the Neoproterozoic period (0.85-0.7 Ga) is much smaller in scale but widespread on the Earth and record important information of the evolution of the Earth. The Neoarchean and Paleoproterozoic BIFs have been well studied and understood, while few detailed studies on Neoproterozoic BIFs have been made, and only a few modem geochronology studies were carried out on Neoproterozoic BIFs.展开更多
Estimates of early atmosphere compositions from metamorphosed banded iron formations(BIFs)including the well-studied ≥3.7 BIFs of the Isua supracrustal belt(Greenland)are dependent on knowledge of primary versus seco...Estimates of early atmosphere compositions from metamorphosed banded iron formations(BIFs)including the well-studied ≥3.7 BIFs of the Isua supracrustal belt(Greenland)are dependent on knowledge of primary versus secondary Fe-mineralogical assemblages.Using new observations from locally well preserved domains,we interpret that a previously assumed primary redox indicator mineral,magnetite,is secondary after sedimentary Fe-clays(probably greenalite)±carbonates.Within ~3.7 Ga Isua BIF,pre-tectonic nodules of quartz+Fe-rich amphibole±calcite reside in a finegrained(≤100 μm)quartz+magnetite matrix.We interpret the Isua nodule amphibole as the metamorphosed equivalent of primary Fe-rich clays,armoured from diagenetic oxidative reactions by early silica concretion.Additionally,in another low strain lacunae,~3.76 Ga BIF layering is not solid magnetite but instead fine-grained magnetite+quartz aggregates.These magnetite+quartz aggregates are interpreted as the metamorphosed equivalent of Fe-clay-rich layers that were oxidised during diagenesis,because they were not armoured by early silicification.In almost all Isua BIF exposures,this evidence has been destroyed by strong ductile deformation.The Fe-clays likely formed by abiotic reactions between aqueous Fe^(2+)and silica.These clays along with silica±carbonate were deposited below an oceanic Fe-chemocline as the sedimentary precursors of BIF.Breakdown of the clays on the sea floor may have been by anaerobic oxidation of Fe^(2+),a mechanism compatible with iron isotopic data previously published on these rocks.The new determinations of the primary redoxsensitive Fe-mineralogy of BIF significantly revise estimates of early Earth atmospheric oxygen and CO_2 content,with formation of protolith Fe-rich clays and carbonates compatible with an anoxic Eoarchean atmosphere with much higher CO_2 levels than previously estimated for Isua and in the present-day atmosphere.展开更多
The Neoproterozoic banded iron formations(BIFs)were closely associated with the“Snowball Earth”during the breakup of the Rodinia,thus they played an important role in our understanding of the atmospheric and oceanic...The Neoproterozoic banded iron formations(BIFs)were closely associated with the“Snowball Earth”during the breakup of the Rodinia,thus they played an important role in our understanding of the atmospheric and oceanic oxygen levels during this period.In this contribution,the Neoproterozoic(ca.737 Ma)Baijianshan BIF at Southeast Tarim,northwestern China was identified.Magnetite is the dominated iron-species,which occurs as the lamina interbedded with chert.The BIF contains low concentrations of trace elements,and is depleted in light rare earth elements(LREEs)based on comparison with the Post-Archean Australian Shale(PAAS).In addition,the BIF exhibits slightly positive La-Eu anomalies,negligible Ce anomalies,insignificant Y anomalies,chondritic Y/Ho ratios(23-32),and slightly chondritic initial ε_(Nd)(t=737 Ma)values(−0.45 to 1.46,averaging 0.37).All these features indicate that the precipitation of Baijianshan BIF was closely related to the submarine low-T hydrothermal fluids with little detrital contribution.Moreover,the Baijianshan BIF is characterized by the significant enrichment of heavy Fe isotopes,with δ^(57)Fe_(IRMM-014) values ranging from 1.78‰ to 3.05‰,revealing the partial oxidation of Fe^(2+) into Fe^(3+) during the precipitation of this BIF.Our data suggest that the formation of Baijianshan BIF was closely associated with a significantly reducing ocean,which most likely was isolated from the oxidized atmosphere by a local ice sheet.This Neoproterozoic Baijianshan ocean has the initial oxygen levels as low as,or even lower than that of Archean and Paleoproterozoic oceans.展开更多
Anisotropy of magnetic susceptibility (AMS) of banded iron formations (BIFs) is characterized by high anisotropy and well-developed bedding-parallel magnetic foliation. Since most previous studies were focused on pala...Anisotropy of magnetic susceptibility (AMS) of banded iron formations (BIFs) is characterized by high anisotropy and well-developed bedding-parallel magnetic foliation. Since most previous studies were focused on palaeomagneism of BIFs and BIF-derived iron ores, little effort has been made to further understand this special type of AMS for BIFs. A detailed theoretical analysis, incorporating with the previous experimental data, is made to understand the formative mechanism of this special anisotropy for BIFs. The good consistence between the theoretical and experimental results demonstrates that this type of anisotropy is likely caused by the layered structure of BIFs, and thus verifies the term of textural anisotropy for BIFs. Theoretical analysis also shows that in the negligence of the inter-layer magnetic action BIF’s apparent anisotropy increases with an increase in intrinsic susceptibility of magnetic layers, but decreases with an increase in length-to- diameter ratio of the magnetic layer.展开更多
The earliest Precambrian microbial structures appear in successions with banded iron formations (BIF) suggesting genetic relationships. The hypothesis of the deep ocean origin of BIFs associated with Mid-Ocean Ridge (...The earliest Precambrian microbial structures appear in successions with banded iron formations (BIF) suggesting genetic relationships. The hypothesis of the deep ocean origin of BIFs associated with Mid-Ocean Ridge (MOR) like features seems to have been recently supported by the discovery of peculiar microbial ecosystems with unique faunal assemblages restricted to these volcanic vents. However, new sedimentological evidence points to the accumulation of varved BIF in huge, very shallow lakes of hydrothermal-water situated on continental plates while passing through thePolar Regions, where UV radiation is minimal. The mineral-rich solutions seeped from numerous fumaroles, providing suitable conditions for chemical reactions between inorganic components, incidentally creating organic-like self-multiplying molecules long before the biologically-initiated BIF deposition. Some of these early chemoautotrophic prokaryotes developed oxygenic photosynthesis during half a year of solar illumination. The released oxygen formed iron oxides and carbonates deposited with amorphous silica (geyserite) in laminae as BIF during 3.8 - 1.9 Ga. BIF deposition consumed most of the photosynthetic oxygen for 1.4 billion years. Intensified cyanobacteria oxygenic photosynthesis during 2.4 - 2.2 Ga raised the atmospheric oxygen content (Great Oxidation Event) over the Polar Regions, forming an oxygen-ozone shield against UV radiation. It gradually extended to lower latitudes, enabling prokaryotes to leave their ecologically stable habitat and acclimatize in new ecosystems, where they diversified, leading to eukaryote evolution. The 231/2° inclination of Earth’s rotation axis differentiated the solar effect on the Polar Regions, which controlled life evolution on Earth, as well as on planet Mars (25° inclination), where life probably did not evolve beyond early prokaryotes.展开更多
Three experiments were set up to evaluate conditions for the high-temperature decomposition of celadonite from a banded iron formation in an alumina-free system and identify its decomposition products. It was estimate...Three experiments were set up to evaluate conditions for the high-temperature decomposition of celadonite from a banded iron formation in an alumina-free system and identify its decomposition products. It was estimated that at 650 and 750 °C, with a Ni Ni O buffer and pressure of 3 kbar, celadonite completely decomposes and the decomposition products were tetraferribiotite, magnetite and quartz. Under more oxidizing conditions(hematite-magnetite buffer instead of Ni Ni O), ferrous potassium feldspar sanidine forms instead of magnetite.During the celadonite decomposition in oxidizing conditions more magnesian and aluminous tetraferribiotite,along with ferrous sanidine, are formed than at reducing conditions.展开更多
Banded iron formations (BIFs) are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environm...Banded iron formations (BIFs) are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in Lake Superior (Canada) and Carajas (Brazil) have been studied by planetary scientists to trace the evolution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposition is found to be the most supportive mechanism for its secondary iron rich deposits. In the present study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine environment on Mars. The prominent banding feature of banded iron formations is in the range of few millimeters to few centimeters in thickness. Fe rich bands are darker (gray) in color compared to the light reddish jaspilitic chert bands. Thin quartz veins (〈4 mm) are occasionally observed in the handspecimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include 0.65, 0.86, 1.4 and 1.9 μm, in which 0.56 and 0.86 μm absorption bands are due to ferric iron and 1.4 and 1,9 μm bands are due to OH/H2O. To validate the mineralogical results obtained from VlS/NIR spectral radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum craton suggests dehydration activity, which has altered the primary iron oxide phases into the secondary iron oxide phases. The optimum bands identified for the minerals using various spectroscopic techniques can be used as reference for similar mineral deposits on any remote area on Earth or on other hydrated planetary surfaces like Mars.展开更多
Precambrian banded iron formation(BIF)is one of the most important mineral resources in China,mostly abundant in the North China Craton(NCC)with relatively less common in South China.Since the BIF and siliceous rocks ...Precambrian banded iron formation(BIF)is one of the most important mineral resources in China,mostly abundant in the North China Craton(NCC)with relatively less common in South China.Since the BIF and siliceous rocks both originated from chemical deposition,the syngenetic BIF and Siliceous rocks can help evaluate their environment of formation.We examine here the mineralogy and geochemistry of siliceous rocks associated with the Tieshanmiao Formation BIF,aiming to decipher the conditions of formation of both BIF and Siliceous rocks in the Wuyang area in the NCC.Analysis of the geochemical characteristics of whole rock shows that the Si O2 content of the siliceous rock ranges from 90.11%to 94.85%and is relatively high overall.Trace element contents of Ba and U are also high,the Ba/Sr ratio ranges from 3.89 to 25.28 and the U/Th ratio ranges from 0.09 to 0.20.Finally,theΣREE value of rare earth elements ranges from 57.03 ppm to 152.59 ppm,and these indexes all indicate that siliceous rock resulted from hydrothermal deposition.Plots of Al2 O3-Si O2,Si O2/(K2 O+Na2 O)-Mn O2/Ti O2 and Mn-10×(Cu+Co+Ni)-Fe in discrimination diagrams also verify this interpretation.However,both the Mg O content,ranging from 0.16 to 0.32,and the Fe/Ti ratio,ranging from 2.50 to 9.72,suggest that terrigenous material was added during the depositional process.Major and trace element parameters of siliceous rock,such as the Al/(A1+Fe+Mn)ratio(from 0.81 to 0.93),Mn O/Ti O2(from 0.00 to 0.17),Al/(Al+Fe)(from 0.82 to 0.93),Sc/Th ratio(from 0.21 to 0.50),U/Th(from 0.09 to 0.20),(La/Yb)N(from 0.83 to 3.04),and the(La/Ce)N(from 0.01 to 0.02)all imply that the siliceous rock formed in a continental margin.In addition,the Sr/Ba ratio from 0.08 to 0.26,theδCe value from 0.31 to 0.90,and theδEu value from 0.14 to 0.58,all indicate that the siliceous rock was formed at a relatively deeper water depth and under weak hydrodynamic conditions.Siliceous rock and BIF formed in the same geological setting,with the Si O2/(K2 O+Na2 O)ratio of siliceous rock ranging from 28.61 to 47.43,the Si O2/Al2 O3 ratio from 16.53 to 32.37,and the Si O2/Mg O ratio from 287.28 to 592.81,which are all in agreement with chemical deposition associated with volcanic eruptions.The Al2 O3/Ti O2 ratio from 37.82 to 50.30 indicates that the magma source of siliceous rock was of slightly intermediate composition.During the Late Archean in the Wuyang area,the high concentration and high purity Si O2 quickly precipitated from hydrothermal fluids to finally result in the accumulation of siliceous rock in a marginal sea,while the input corresponding to iron formation components was deposited to form iron formation layers,and limestone was only the product formed during the deposition intervals of siliceous rock and iron formations.In this study,the synsedimentary siliceous rocks of BIF act as a new way to provide direct evidence to understand the formation environment of BIF due to its high geochemical stability.展开更多
The Bipindi iron ore district is located in the central section of the Nyong Complex at the northwestern margin of the Congo Craton in Southwest Cameroon.This iron district contains numerous iron mineralization hosted...The Bipindi iron ore district is located in the central section of the Nyong Complex at the northwestern margin of the Congo Craton in Southwest Cameroon.This iron district contains numerous iron mineralization hosted by the Mewongo,Bibole,Kouambo,and Zambi banded iron formations(BIFs).These BIFs contain magnetite as the main iron ore mineral associated with pyrite,and gangue minerals are quartz with minor chlorite and amphibole.The origin of iron ore from these BIFs was investigated using a combination of in-situ magnetite and whole-rock chemistry.The studied BIF ore samples have a narrow range of TFe between 30.90 wt.%and 43.20 wt.%,indicating a low-grade ore.The geochemical signatures of magnetite such as low contents of base metals(e.g.,Cu,Co,V,and Zn)and low Co/Zn ratios<0.85 indicate a hydrothermal origin.Combined with the geochemical features of these BIFs,e.g.,high Fe/Ti and Fe/Al ratios(mean>600 and>75,respectively),we suggest that magnetite was derived from a mixture of seawater and~0.1%low-temperature hydrothermal fluids in an oxidizing environment.Collectively,low-temperature hydrothermal and later metamorphic fluids were necessary for the transformation of the protolith Nyong Complex BIFs to iron ore.展开更多
Mohanty et al. (2012) have wrongly analyzed M?ssbauer spectra obtained from various iron ore samples. We criticized their approach suggesting suitable methodology, and suggested to refer earlier work carried out by Na...Mohanty et al. (2012) have wrongly analyzed M?ssbauer spectra obtained from various iron ore samples. We criticized their approach suggesting suitable methodology, and suggested to refer earlier work carried out by Nayak et al. (2001, 2004) on representative samples from the same geological belt.展开更多
条带状铁建造(banded iron formations, BIFs)是早前寒武纪(3.8~1.8 Ga)缺氧古海洋中大规模Fe(Ⅱ)氧化形成的一类富铁沉积岩,具有典型的硅质层与铁质层互层的条带状或层状结构,形成的铁矿物主要以磁铁矿和赤铁矿为主。BIFs构成了全球规...条带状铁建造(banded iron formations, BIFs)是早前寒武纪(3.8~1.8 Ga)缺氧古海洋中大规模Fe(Ⅱ)氧化形成的一类富铁沉积岩,具有典型的硅质层与铁质层互层的条带状或层状结构,形成的铁矿物主要以磁铁矿和赤铁矿为主。BIFs构成了全球规模最大、储量最多的铁矿类型,具有重大的经济价值。BIFs也是地球环境与生命协同演化的产物,是研究早期地球许多重大演化事件(如大氧化事件)独特的载体。然而,由于早前寒武古海洋环境和沉积条件的独特性,尽管经过了近百年的研究,BIFs成因仍存在许多未解之谜。其中,最关键的科学问题莫过于溶解态Fe(Ⅱ)如何在缺氧古海洋中大量氧化形成特定的铁矿物组合。本文首先概述了BIFs类型、物质组成及来源,以及沉积条件等基本信息;然后从BIFs特殊的沉积环境入手,综述了前人提出的Fe(Ⅱ)氧化机理及存在的一些问题,讨论了微生物驱动下的氮元素生物地球化学循环对Fe(Ⅱ)氧化及BIFs形成的贡献及相关研究进展,最后对BIFs成因研究提出了展望。展开更多
The Magnetic method is one of the best geophysical techniques used to delineate subsurface structures. This study was conducted to investigate the basement faulting and ore mineralization into the overlying geological...The Magnetic method is one of the best geophysical techniques used to delineate subsurface structures. This study was conducted to investigate the basement faulting and ore mineralization into the overlying geological cover. The GEOSOFT v8.4 software was used to process the data. Upward continuation of the residual magnetic intensity map at various altitudes and the maxima of their horizontal gradient magnetic were used to highlight faults from shallow to deep, as well as, their dips and mineralization zones. The faults with the directions E-W, ESE-WNW and ENE-WSW are identified confirming the result of [1]. This study also reveals that, the layer is affected by faults propagating from the basement upwards into the cover. Our results added additional information to the knowledge of the geological structure and the mineral resources potential in the study area. Based on the 2D3/4 modeling, the Dja Fault (DF) is revealed and highlighted sub-area marked by a magnetite/or hematite dolerite, schist and sandstone blocks, which show strong magnetization. Specifically, in this area, models are made of BIF (bounded iron formation) and BIQ (bounded iron quartzite) as dominant minerals.展开更多
The results of silicon isotope analyses of Precambrian BIF are reported for the first time. The δ^(30)Si values of magnetite-quartzite in the Gongchangling ore deposit are between —0.9 and —2.2‰, which are obvious...The results of silicon isotope analyses of Precambrian BIF are reported for the first time. The δ^(30)Si values of magnetite-quartzite in the Gongchangling ore deposit are between —0.9 and —2.2‰, which are obviously different from those in host rocks (0.2——0.6‰). It is suggested that the BIF may be a product of chemical precipitation in Archean submarine hydrothermal environment. There is a possibility of using silicon isotopes to distinguish the protolith of metamorphic rocks and trace the origin of silicon of altered minerals.展开更多
司家营条带状含铁建造(Banded iron formation,BIF)型铁矿床是冀东地区规模最大的铁矿床,前人对其进行了大量的年代学、岩石学和元素地球化学工作,但目前尚未对其进行Fe同位素研究。笔者等通过Fe同位素和主微量、稀土元素相结合的方法...司家营条带状含铁建造(Banded iron formation,BIF)型铁矿床是冀东地区规模最大的铁矿床,前人对其进行了大量的年代学、岩石学和元素地球化学工作,但目前尚未对其进行Fe同位素研究。笔者等通过Fe同位素和主微量、稀土元素相结合的方法对司家营BIF的成矿物质来源和形成背景提出了有效制约,同时对司家营BIF的锆石U-Pb年龄数据进行补充。锆石U-Pb年代学显示,司家营BIF形成于2537~2531 Ma。地球化学数据显示司家营BIF矿石主要由TFe_(2)O_(3)和SiO_(2)组成,具有较低的Al_(2)O_(3)和TiO_(2)含量,富集Fe重同位素(δ^(56)Fe=0.341‰~0.525‰);稀土元素配分模式呈现轻稀土亏损、重稀土富集的特征,具有明显的Eu、Y、La正异常,Y/Ho值较高(Y/Ho=34.96~45.84)。这些特征表明司家营BIF是基本无碎屑物质参与的化学沉积岩,稀土元素来源于高温热液和海水的混合溶液,铁质来源于海相热液流体。司家营BIF缺乏真正的Ce负异常和Fe同位素组成均为正值指示其形成于缺氧环境。综合对比世界上其他地区太古宙BIF的Fe同位素特征,笔者等认为新太古代时期地球海洋含氧量逐步上升,此时海洋总体属于缺氧环境,但部分地区氧气含量较高。展开更多
基金the“Fundamental Research Funds for the Chinese Central Universities”(Grant No.2017CXNL03)the Chinese Scholarship Council(Grant No.2015120T19).
文摘The discovery of the Gouap banded iron formations(BIFs)-hosted iron mineralization in the northwestern of the Nyong Group(Ntem Complex)in southwestern Cameroon provides unique insights into the geology of this region.In this contribution,we firstly report detailed study of geochemistry,isotopic and geochronology of well preserved samples of the Gouap BIFs collected from diamond drillcores.The Gouap BIFs consist mainly of amphibole BIFs and amphibole-pyrite BIFs characterized by dominant Fe_(2)O_(3)+SiO_(2)contents and variable contents of CaO,MgO and SO_(3),consistent with the presence of amphibole,chlorite,epidote and pyrite,formed during amphibolite facies metamorphism and overprinted hydrothermal event.The amphibole–pyrite BIFs are typically enriched in trace and rare earth elements(REE)compared to the amphibole BIFs,suggesting the influence of detrital materials as well as secondary hydrothermal alteration.The Post Archean Australian Shale(PAAS)-normalized REE–Y profiles of the Gouap BIFs display positive La,Eu anomalies,weak negative Ce anomalies,indicating a mixture of low-temperature hydrothermal fluids and relatively oxic conditions probably under relative shallow seawater.We present here the first isotopic data of BIFs within the Ntem Complex.Theδ^(30)Si_(NBS28)values of the quartz from the Gouap BIFs vary from-1.5‰to-0.3‰and from-0.8‰to-0.9‰for the amphibole BIFs and amphibole–pyrite BIFs,respectively.The quartz hasδ^(18)OV-SMOW values of 6.8‰–9.5‰(amphibole BIFs)and 9.2‰–10.6‰(amphibole–pyrite BIFs).The magnetite from the Gouap BIFs showsδ^(18)O values ranging from-3.5‰to-1.8‰and from-3‰to-1.7‰for the amphibole BIFs and amphibole–pyrite BIFs,respectively.Moreover,the pyrite grains in the amphibole–pyrite BIFs displayδ34S values of 1.1‰–1.8‰.All isotopic data of the Gouap BIFs confirm that they might have precipitated from low-temperature hydrothermal fluids with detrital input distant from the volcanic activity.According to their geochemical and isotopic characteristics,we propose that the Gouap BIFs belong to the Superior type.In situ U–Pb zircon dating of BIFs was conducted to assess the BIF depositional age based on strong evidence of zircon in thin section.The Gouap BIFs were probably deposited at 2422±50 Ma in a region where sediments extended from continental shelf to deep-water environments along craton margins like the Caue Formation of the Minas Supergroup,Brazil.The studied BIFs have experienced regional hydrothermal activity and metamorphism at 2089±8.3 Ma during the Eburnean–Transamazonian orogeny.These findings suggest a physical continuity between the protocratonic masses of both Sao Francisco and Congo continents in the Rhyacian Period.
基金partially supported by JSPS grants (No. 26220713) from the Ministry of Education, Culture, Sports, Science and Technology of Japan
文摘Banded Iron Formations(BIFs) are chemical sediments, ubiquitously distributed in the Precambrian supracrustal belts; thus their trace element compositions are helpful for deciphering geochemical evolution on the Earth through time. However, it is necessary to elucidate factors controlling the whole-rock compositions in order to decode the ancient seawater compositions because their compositions are highly variable. We analyzed major and trace element contents of the BIFs in the 3.8-3.7 Ga Isua supracrustal belt(ISB), southern West Greenland. The BIFs are petrographically classified into four types:Black-,Gray-, Green-and White-types, respectively. The Green-type BIFs contain more amphiboles, and are significantly enriched in Co, Ni, Cu, Zn, Y, heavy rare earth element(HREE) and U contents. However,their bulk compositions are not suitable for estimate of seawater composition because the enrichment was caused by secondary mobility of metamorphic Mg, Ca and Si-rich fluid, involvement of carbonate minerals and silicate minerals of olivine and pyroxene and/or later silicification or contamination of volcanic and clastic materials. The White-type BIFs are predominant in quartz, and have lower transition element and REE contents. The Gray-type BIFs contain both quartz and magnetite. The Black-type BIFs are dominated by magnetite, and contain moderate to high transition element and REE contents. But,positive correlations of V, Ni, Zn and U contents with Zr contents suggest that involvement of detrital,volcanic and exhalative materials influences on their contents. The evidence for significant influence of the materials on the transition element contents such as Ni in the BIFs indicates the transition element contents in the Archean ocean were much lower than previously estimated. We reconstructed secular variations of V,Co, Zn and U contents of BIFs through time, which show Ni and Co contents decreased whereas V, Zn and U contents increased through time. Especially, the Ni and Co contents drastically decreased in the Mesoarchean rather than around the Great Oxidation Event. On the other hand, the V,Zn and U contents progressively increased from the Mesoarchean to the Proterozoic. Stratigraphical trends of the BIFs show increase in Y/Ho ratios and decrease in positive Eu anomaly upwards, respectively. The stratigraphic changes indicate that a ratio of hydrothermal fluid to seawater component gradually decrease through the deposition, and support the Eoarchean plate tectonics, analogous to the their stratigraphic variations of seafloor metalliferous sediments at present and in the Mesoarchean.
基金financially supported by the National Nature Science Foundation of China(grant No.41302069)
文摘Objective Banded Iron Formations (BIFs) are ferruginous chemical sedimentary rocks that precipitated throughout the Precambrain, which constitute the most important iron resources in the world. The majority of BIFs were developed in the Neoarchean and early Paleoproterozoic periods (3.2-1.8 Ga), which are well known and have been mined for centuries. Another type of the BIFs which was formed in the Neoproterozoic period (0.85-0.7 Ga) is much smaller in scale but widespread on the Earth and record important information of the evolution of the Earth. The Neoarchean and Paleoproterozoic BIFs have been well studied and understood, while few detailed studies on Neoproterozoic BIFs have been made, and only a few modem geochronology studies were carried out on Neoproterozoic BIFs.
基金supported by Australian Research Council(Grant No.DP120100273)the GeoQuEST Research Centre of the University of Wollongong,Australia
文摘Estimates of early atmosphere compositions from metamorphosed banded iron formations(BIFs)including the well-studied ≥3.7 BIFs of the Isua supracrustal belt(Greenland)are dependent on knowledge of primary versus secondary Fe-mineralogical assemblages.Using new observations from locally well preserved domains,we interpret that a previously assumed primary redox indicator mineral,magnetite,is secondary after sedimentary Fe-clays(probably greenalite)±carbonates.Within ~3.7 Ga Isua BIF,pre-tectonic nodules of quartz+Fe-rich amphibole±calcite reside in a finegrained(≤100 μm)quartz+magnetite matrix.We interpret the Isua nodule amphibole as the metamorphosed equivalent of primary Fe-rich clays,armoured from diagenetic oxidative reactions by early silica concretion.Additionally,in another low strain lacunae,~3.76 Ga BIF layering is not solid magnetite but instead fine-grained magnetite+quartz aggregates.These magnetite+quartz aggregates are interpreted as the metamorphosed equivalent of Fe-clay-rich layers that were oxidised during diagenesis,because they were not armoured by early silicification.In almost all Isua BIF exposures,this evidence has been destroyed by strong ductile deformation.The Fe-clays likely formed by abiotic reactions between aqueous Fe^(2+)and silica.These clays along with silica±carbonate were deposited below an oceanic Fe-chemocline as the sedimentary precursors of BIF.Breakdown of the clays on the sea floor may have been by anaerobic oxidation of Fe^(2+),a mechanism compatible with iron isotopic data previously published on these rocks.The new determinations of the primary redoxsensitive Fe-mineralogy of BIF significantly revise estimates of early Earth atmospheric oxygen and CO_2 content,with formation of protolith Fe-rich clays and carbonates compatible with an anoxic Eoarchean atmosphere with much higher CO_2 levels than previously estimated for Isua and in the present-day atmosphere.
基金funded by the Fundamental Research Fund for central universities(Grant No.B16020127)。
文摘The Neoproterozoic banded iron formations(BIFs)were closely associated with the“Snowball Earth”during the breakup of the Rodinia,thus they played an important role in our understanding of the atmospheric and oceanic oxygen levels during this period.In this contribution,the Neoproterozoic(ca.737 Ma)Baijianshan BIF at Southeast Tarim,northwestern China was identified.Magnetite is the dominated iron-species,which occurs as the lamina interbedded with chert.The BIF contains low concentrations of trace elements,and is depleted in light rare earth elements(LREEs)based on comparison with the Post-Archean Australian Shale(PAAS).In addition,the BIF exhibits slightly positive La-Eu anomalies,negligible Ce anomalies,insignificant Y anomalies,chondritic Y/Ho ratios(23-32),and slightly chondritic initial ε_(Nd)(t=737 Ma)values(−0.45 to 1.46,averaging 0.37).All these features indicate that the precipitation of Baijianshan BIF was closely related to the submarine low-T hydrothermal fluids with little detrital contribution.Moreover,the Baijianshan BIF is characterized by the significant enrichment of heavy Fe isotopes,with δ^(57)Fe_(IRMM-014) values ranging from 1.78‰ to 3.05‰,revealing the partial oxidation of Fe^(2+) into Fe^(3+) during the precipitation of this BIF.Our data suggest that the formation of Baijianshan BIF was closely associated with a significantly reducing ocean,which most likely was isolated from the oxidized atmosphere by a local ice sheet.This Neoproterozoic Baijianshan ocean has the initial oxygen levels as low as,or even lower than that of Archean and Paleoproterozoic oceans.
文摘Anisotropy of magnetic susceptibility (AMS) of banded iron formations (BIFs) is characterized by high anisotropy and well-developed bedding-parallel magnetic foliation. Since most previous studies were focused on palaeomagneism of BIFs and BIF-derived iron ores, little effort has been made to further understand this special type of AMS for BIFs. A detailed theoretical analysis, incorporating with the previous experimental data, is made to understand the formative mechanism of this special anisotropy for BIFs. The good consistence between the theoretical and experimental results demonstrates that this type of anisotropy is likely caused by the layered structure of BIFs, and thus verifies the term of textural anisotropy for BIFs. Theoretical analysis also shows that in the negligence of the inter-layer magnetic action BIF’s apparent anisotropy increases with an increase in intrinsic susceptibility of magnetic layers, but decreases with an increase in length-to- diameter ratio of the magnetic layer.
文摘The earliest Precambrian microbial structures appear in successions with banded iron formations (BIF) suggesting genetic relationships. The hypothesis of the deep ocean origin of BIFs associated with Mid-Ocean Ridge (MOR) like features seems to have been recently supported by the discovery of peculiar microbial ecosystems with unique faunal assemblages restricted to these volcanic vents. However, new sedimentological evidence points to the accumulation of varved BIF in huge, very shallow lakes of hydrothermal-water situated on continental plates while passing through thePolar Regions, where UV radiation is minimal. The mineral-rich solutions seeped from numerous fumaroles, providing suitable conditions for chemical reactions between inorganic components, incidentally creating organic-like self-multiplying molecules long before the biologically-initiated BIF deposition. Some of these early chemoautotrophic prokaryotes developed oxygenic photosynthesis during half a year of solar illumination. The released oxygen formed iron oxides and carbonates deposited with amorphous silica (geyserite) in laminae as BIF during 3.8 - 1.9 Ga. BIF deposition consumed most of the photosynthetic oxygen for 1.4 billion years. Intensified cyanobacteria oxygenic photosynthesis during 2.4 - 2.2 Ga raised the atmospheric oxygen content (Great Oxidation Event) over the Polar Regions, forming an oxygen-ozone shield against UV radiation. It gradually extended to lower latitudes, enabling prokaryotes to leave their ecologically stable habitat and acclimatize in new ecosystems, where they diversified, leading to eukaryote evolution. The 231/2° inclination of Earth’s rotation axis differentiated the solar effect on the Polar Regions, which controlled life evolution on Earth, as well as on planet Mars (25° inclination), where life probably did not evolve beyond early prokaryotes.
文摘Three experiments were set up to evaluate conditions for the high-temperature decomposition of celadonite from a banded iron formation in an alumina-free system and identify its decomposition products. It was estimated that at 650 and 750 °C, with a Ni Ni O buffer and pressure of 3 kbar, celadonite completely decomposes and the decomposition products were tetraferribiotite, magnetite and quartz. Under more oxidizing conditions(hematite-magnetite buffer instead of Ni Ni O), ferrous potassium feldspar sanidine forms instead of magnetite.During the celadonite decomposition in oxidizing conditions more magnesian and aluminous tetraferribiotite,along with ferrous sanidine, are formed than at reducing conditions.
基金financially supported by Indian Institute of Space Science and Technology(IIST),Thiruvananthapuram
文摘Banded iron formations (BIFs) are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in Lake Superior (Canada) and Carajas (Brazil) have been studied by planetary scientists to trace the evolution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposition is found to be the most supportive mechanism for its secondary iron rich deposits. In the present study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine environment on Mars. The prominent banding feature of banded iron formations is in the range of few millimeters to few centimeters in thickness. Fe rich bands are darker (gray) in color compared to the light reddish jaspilitic chert bands. Thin quartz veins (〈4 mm) are occasionally observed in the handspecimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include 0.65, 0.86, 1.4 and 1.9 μm, in which 0.56 and 0.86 μm absorption bands are due to ferric iron and 1.4 and 1,9 μm bands are due to OH/H2O. To validate the mineralogical results obtained from VlS/NIR spectral radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum craton suggests dehydration activity, which has altered the primary iron oxide phases into the secondary iron oxide phases. The optimum bands identified for the minerals using various spectroscopic techniques can be used as reference for similar mineral deposits on any remote area on Earth or on other hydrated planetary surfaces like Mars.
基金supported by the NSFC (NO. 41806076,41303025)the Scientific Research Fund of the Second Institute of Oceanography, MNR of China (JG1905)the National Program on Key Basic Research Project (973 Program) of China (No. 2012CB406601)
文摘Precambrian banded iron formation(BIF)is one of the most important mineral resources in China,mostly abundant in the North China Craton(NCC)with relatively less common in South China.Since the BIF and siliceous rocks both originated from chemical deposition,the syngenetic BIF and Siliceous rocks can help evaluate their environment of formation.We examine here the mineralogy and geochemistry of siliceous rocks associated with the Tieshanmiao Formation BIF,aiming to decipher the conditions of formation of both BIF and Siliceous rocks in the Wuyang area in the NCC.Analysis of the geochemical characteristics of whole rock shows that the Si O2 content of the siliceous rock ranges from 90.11%to 94.85%and is relatively high overall.Trace element contents of Ba and U are also high,the Ba/Sr ratio ranges from 3.89 to 25.28 and the U/Th ratio ranges from 0.09 to 0.20.Finally,theΣREE value of rare earth elements ranges from 57.03 ppm to 152.59 ppm,and these indexes all indicate that siliceous rock resulted from hydrothermal deposition.Plots of Al2 O3-Si O2,Si O2/(K2 O+Na2 O)-Mn O2/Ti O2 and Mn-10×(Cu+Co+Ni)-Fe in discrimination diagrams also verify this interpretation.However,both the Mg O content,ranging from 0.16 to 0.32,and the Fe/Ti ratio,ranging from 2.50 to 9.72,suggest that terrigenous material was added during the depositional process.Major and trace element parameters of siliceous rock,such as the Al/(A1+Fe+Mn)ratio(from 0.81 to 0.93),Mn O/Ti O2(from 0.00 to 0.17),Al/(Al+Fe)(from 0.82 to 0.93),Sc/Th ratio(from 0.21 to 0.50),U/Th(from 0.09 to 0.20),(La/Yb)N(from 0.83 to 3.04),and the(La/Ce)N(from 0.01 to 0.02)all imply that the siliceous rock formed in a continental margin.In addition,the Sr/Ba ratio from 0.08 to 0.26,theδCe value from 0.31 to 0.90,and theδEu value from 0.14 to 0.58,all indicate that the siliceous rock was formed at a relatively deeper water depth and under weak hydrodynamic conditions.Siliceous rock and BIF formed in the same geological setting,with the Si O2/(K2 O+Na2 O)ratio of siliceous rock ranging from 28.61 to 47.43,the Si O2/Al2 O3 ratio from 16.53 to 32.37,and the Si O2/Mg O ratio from 287.28 to 592.81,which are all in agreement with chemical deposition associated with volcanic eruptions.The Al2 O3/Ti O2 ratio from 37.82 to 50.30 indicates that the magma source of siliceous rock was of slightly intermediate composition.During the Late Archean in the Wuyang area,the high concentration and high purity Si O2 quickly precipitated from hydrothermal fluids to finally result in the accumulation of siliceous rock in a marginal sea,while the input corresponding to iron formation components was deposited to form iron formation layers,and limestone was only the product formed during the deposition intervals of siliceous rock and iron formations.In this study,the synsedimentary siliceous rocks of BIF act as a new way to provide direct evidence to understand the formation environment of BIF due to its high geochemical stability.
基金supported by the Central South University Postdoctoral Research Fund(No.22020084)。
文摘The Bipindi iron ore district is located in the central section of the Nyong Complex at the northwestern margin of the Congo Craton in Southwest Cameroon.This iron district contains numerous iron mineralization hosted by the Mewongo,Bibole,Kouambo,and Zambi banded iron formations(BIFs).These BIFs contain magnetite as the main iron ore mineral associated with pyrite,and gangue minerals are quartz with minor chlorite and amphibole.The origin of iron ore from these BIFs was investigated using a combination of in-situ magnetite and whole-rock chemistry.The studied BIF ore samples have a narrow range of TFe between 30.90 wt.%and 43.20 wt.%,indicating a low-grade ore.The geochemical signatures of magnetite such as low contents of base metals(e.g.,Cu,Co,V,and Zn)and low Co/Zn ratios<0.85 indicate a hydrothermal origin.Combined with the geochemical features of these BIFs,e.g.,high Fe/Ti and Fe/Al ratios(mean>600 and>75,respectively),we suggest that magnetite was derived from a mixture of seawater and~0.1%low-temperature hydrothermal fluids in an oxidizing environment.Collectively,low-temperature hydrothermal and later metamorphic fluids were necessary for the transformation of the protolith Nyong Complex BIFs to iron ore.
文摘Mohanty et al. (2012) have wrongly analyzed M?ssbauer spectra obtained from various iron ore samples. We criticized their approach suggesting suitable methodology, and suggested to refer earlier work carried out by Nayak et al. (2001, 2004) on representative samples from the same geological belt.
文摘条带状铁建造(banded iron formations, BIFs)是早前寒武纪(3.8~1.8 Ga)缺氧古海洋中大规模Fe(Ⅱ)氧化形成的一类富铁沉积岩,具有典型的硅质层与铁质层互层的条带状或层状结构,形成的铁矿物主要以磁铁矿和赤铁矿为主。BIFs构成了全球规模最大、储量最多的铁矿类型,具有重大的经济价值。BIFs也是地球环境与生命协同演化的产物,是研究早期地球许多重大演化事件(如大氧化事件)独特的载体。然而,由于早前寒武古海洋环境和沉积条件的独特性,尽管经过了近百年的研究,BIFs成因仍存在许多未解之谜。其中,最关键的科学问题莫过于溶解态Fe(Ⅱ)如何在缺氧古海洋中大量氧化形成特定的铁矿物组合。本文首先概述了BIFs类型、物质组成及来源,以及沉积条件等基本信息;然后从BIFs特殊的沉积环境入手,综述了前人提出的Fe(Ⅱ)氧化机理及存在的一些问题,讨论了微生物驱动下的氮元素生物地球化学循环对Fe(Ⅱ)氧化及BIFs形成的贡献及相关研究进展,最后对BIFs成因研究提出了展望。
文摘The Magnetic method is one of the best geophysical techniques used to delineate subsurface structures. This study was conducted to investigate the basement faulting and ore mineralization into the overlying geological cover. The GEOSOFT v8.4 software was used to process the data. Upward continuation of the residual magnetic intensity map at various altitudes and the maxima of their horizontal gradient magnetic were used to highlight faults from shallow to deep, as well as, their dips and mineralization zones. The faults with the directions E-W, ESE-WNW and ENE-WSW are identified confirming the result of [1]. This study also reveals that, the layer is affected by faults propagating from the basement upwards into the cover. Our results added additional information to the knowledge of the geological structure and the mineral resources potential in the study area. Based on the 2D3/4 modeling, the Dja Fault (DF) is revealed and highlighted sub-area marked by a magnetite/or hematite dolerite, schist and sandstone blocks, which show strong magnetization. Specifically, in this area, models are made of BIF (bounded iron formation) and BIQ (bounded iron quartzite) as dominant minerals.
文摘The results of silicon isotope analyses of Precambrian BIF are reported for the first time. The δ^(30)Si values of magnetite-quartzite in the Gongchangling ore deposit are between —0.9 and —2.2‰, which are obviously different from those in host rocks (0.2——0.6‰). It is suggested that the BIF may be a product of chemical precipitation in Archean submarine hydrothermal environment. There is a possibility of using silicon isotopes to distinguish the protolith of metamorphic rocks and trace the origin of silicon of altered minerals.
文摘司家营条带状含铁建造(Banded iron formation,BIF)型铁矿床是冀东地区规模最大的铁矿床,前人对其进行了大量的年代学、岩石学和元素地球化学工作,但目前尚未对其进行Fe同位素研究。笔者等通过Fe同位素和主微量、稀土元素相结合的方法对司家营BIF的成矿物质来源和形成背景提出了有效制约,同时对司家营BIF的锆石U-Pb年龄数据进行补充。锆石U-Pb年代学显示,司家营BIF形成于2537~2531 Ma。地球化学数据显示司家营BIF矿石主要由TFe_(2)O_(3)和SiO_(2)组成,具有较低的Al_(2)O_(3)和TiO_(2)含量,富集Fe重同位素(δ^(56)Fe=0.341‰~0.525‰);稀土元素配分模式呈现轻稀土亏损、重稀土富集的特征,具有明显的Eu、Y、La正异常,Y/Ho值较高(Y/Ho=34.96~45.84)。这些特征表明司家营BIF是基本无碎屑物质参与的化学沉积岩,稀土元素来源于高温热液和海水的混合溶液,铁质来源于海相热液流体。司家营BIF缺乏真正的Ce负异常和Fe同位素组成均为正值指示其形成于缺氧环境。综合对比世界上其他地区太古宙BIF的Fe同位素特征,笔者等认为新太古代时期地球海洋含氧量逐步上升,此时海洋总体属于缺氧环境,但部分地区氧气含量较高。